, by European Union's Horizon 2020 research and innovation program under the grant agreement n 731976 (MA-GENTA)

I. Lucas, S. Durand-vidal, and O. Bernard, Influence of the volume fraction on the electrokinetic properties of maghemite nanoparticles in suspension, Molecular Phys, vol.112, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083559

J. Thomas and . Salez, Can charged colloidal particles increase the thermoelectric energy conversion efficiency?, Phys.Chem.Chem.Phys, vol.19, p.9409, 2017.

B. I. Shklovski and A. L. Efros, Electronic properties of doped semiconductors, 1984.

B. V. Derjaguin and L. D. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physico Chemica URSS, vol.14, p.633, 1941.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, 2011.

J. C. Riedl, M. A. Akhavan-kazemi, F. Cousin, E. Dubois, S. Fantini et al., Colloidal Dispersions of Oxide Nanoparticles in Ionic Liquids : Elucidating the Key Parameters, 2019.

J. C. Bacri, R. Perzynski, D. Salin, V. Cabuil, and R. Massart, Ionic ferrofluids: A crossing of chemistry and physics, J. Magnetism and Magnetic Materials, vol.17, p.1247, 1981.

E. Dubois, V. Cabuil, F. Boué, and R. Perzynski, Structural analogy between aqueous and oily magnetic fluids, J. Chem. Phys, vol.111, p.7147, 1999.

E. Verwey and J. Overbeek, Theory of the Stability of Lyophobic Colloids, 1948.

J. Dufreche, O. Bernard, and S. Durand-vidal, Frequency-dependent dielectric permittivity of salt-free charged lamellar systems, J. Chem. Phys., B, vol.109, p.9873, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016443

S. Durand-vidal, M. Jardat, and V. Dahirel, Determining the radius and the apparent charge of a micelle from electrical conductivity measurements by using a transport theory: explicit equations for practical use, J. Chem. Phys., B, vol.110, p.15542, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00143442

M. Jardat, V. Dahirel, and S. Durand-vidal, Effective charges of micellar species obtained from Brownian dynamics simulations and from an analytical transport theory, Molecular Phys, vol.104, p.3667, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00164764

P. Heltner, Y. Papir, and I. Krieger,

P. Heltner, Y. Papir, and I. Krieger, Diffraction of light by nonaqueous ordered suspensions, vol.75, p.1881, 1971.

A. Kose, T. Osake, and Y. Kobayschi, Direct observation of ordered latex suspension by metallurgical microscope, J.Colloid Interface Sci, vol.44, p.330, 1973.

R. Williams and R. Crandall, The structure of crystallized suspensions of polystyrene spheres, Phys. Lett., A, vol.48, p.225, 1974.

S. Alexander, P. Chaikin, P. Grant, G. Morales, and P. Pincus, Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory, J. Chem.Phys., B, vol.80, p.5776, 1984.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, vol.6, 2013.

J. D. Jackson, Classical Electrodynamics" Third Edition, 1999.

A. M. Dykhne, Conductivity of a Two-Dimensional Two-Phase System, Soviet JETP, vol.32, 1971.

L. Onsager, On the theory of electrolytes. II, Physik. Z, vol.28, p.277, 1927.

P. Debye and E. Huckel, The theory of the electrolyte II-The border law for electrical conductivity, Physik. Z, vol.24, p.305, 1923.

E. M. Lifshitz and L. P. Pitaevski, Course of Theoretical Physics, 1981.

A. Grosberg, T. Nguyen, and B. Shklovskii, The physics of charge inversion in chemical and biological systems, Rev. Mod. Phys, vol.74, p.329, 2002.

R. Robinson and R. Stokes, Electrolyte Solutions, 1959.

L. Lizana and A. Grossberg, Exact expressions for the mobility and electrophoretic mobility of a weakly charged sphere in a simple electrolyte, Europhysics Letters, vol.104, p.68004, 2013.