S. Zinkle and G. Was, Materials challenges in nuclear energy, Acta Mater, vol.61, pp.735-758, 2013.

V. Barabash, A. Team, S. Peacock, G. Fabritsiev, S. Kalinin et al., Materials challenges for ITER -current status and future activities, J. Nucl. Mater, vol.367, issue.370, pp.21-32, 2007.

, Materials Reliability Program. A Review of Radiation Embrittlement for Stainless Steels (MRP-79-revision 1, Topical report, EPRI, EPRI, 2004.

O. Chopra and A. Rao, A review of irradiation effects on LWR core internal materials -neutron embrittlement, J. Nucl. Mater, vol.412, pp.195-208, 2011.

K. Fukuya, Current understanding of radiation-induced degradation in light water reactor structural materials, J. Nucl. Sci. Technol, vol.50, pp.231-254, 2013.

A. S. Argon, J. Im, and R. Safoglu, Cavity formation from inclusions in ductile fracture, Metallurgical Transactions A, vol.6, pp.825-837, 1975.

C. Beevers and R. Honeycombe, The initiation of ductile fracture in pure metals, Phil. Mag, vol.7, pp.763-773, 1961.

F. A. Mcclintock, A criterion for ductile fracture by the growth of holes, J. Appl. Mech, vol.35, pp.363-371, 1968.

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solid, vol.17, pp.201-217, 1969.

J. Koplik and A. Needleman, Void growth and coalescence in porous plastic solids, Int. J. Solid Struct, vol.24, pp.835-853, 1988.

A. Pineau, A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Mater, vol.107, pp.424-483, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308255

C. Cawthorne and E. Fulton, Voids in irradiated stainless steel, Nature, vol.216, pp.575-576, 1967.

L. Mansur, Void swelling in metals and alloys under irradiation: an assessment of the theory, Nucl. Technol, vol.40, pp.5-34, 1978.

B. Margolin, A. Minkin, V. Smirnov, A. Sorokin, V. Shvetsova et al., The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness, J. Nucl. Mater, vol.480, pp.52-68, 2016.

D. Alexander, J. Pawel, M. Grossbeck, A. Rowcliffe, and K. Shiba, Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures, Effects of radiation on Materials, 17th Vol, ASTM STP 1270, 1995.

S. T?-ahtinen, M. Pyykk?-onen, P. Karjalainen-roikonen, B. Singh, and P. Toft, Effect of neutron irradiation on fracture toughness behaviour of copper alloys, J. Nucl. Mater, vol.258, issue.263, pp.1010-1014, 1998.

M. Li, M. Sokolov, and S. Zinkle, Tensile and fracture toughness properties of neutron-irradiated CuCrZr, J. Nucl. Mater, vol.393, pp.36-46, 2009.

D. Alexander, S. Zinkle, and A. Rowcliffe, Fracture toughness of copper-base alloys for fusion energy applications, J. Nucl. Mater, vol.271, issue.272, pp.429-434, 1999.

M. Li and S. Zinkle, Physical and mechanical properties of copper and copper alloys, Comprehensive Nuclear Materials, pp.667-690, 2012.

G. Odette and G. Lucas, Deformation and fracture in irradiated austenitic stainless steels, J. Nucl. Mater, vol.191, issue.194, pp.50-57, 1992.

A. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I -yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol, vol.99, pp.2-15, 1977.

P. F. Thomason, Ductile Fracture of Metals, 1990.

A. A. Benzerga and J. Leblond, Ductile fracture by void growth to coalescence, Adv. Appl. Mech, vol.44, pp.169-305, 2010.

A. Benzerga, J. Leblond, A. Needleman, and V. Tvergaard, Ductile failure modeling, Int. J. Fract, vol.201, pp.29-80, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01668734

T. Pardoen and J. Hutchinson, Micromechanics-based model for trends in toughness of ductile metals, Acta Mater, vol.51, pp.133-148, 2003.

M. Hamilton and F. Garner, Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel, J. Nucl. Mater, vol.122, issue.123, pp.106-110, 1984.

B. Margolin, A. Minkin, V. Smirnov, and V. Potapova, Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part I. Prediction of fracture strain and fracture toughness of austenitic steels, J. Nucl. Mater, vol.452, pp.595-606, 2014.

C. Ling, B. Tanguy, J. Besson, S. Forest, and F. Latourte, Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals, J. Nucl. Mater, vol.492, pp.157-170, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01540836

J. Hure, S. E. Shawish, L. Cizelj, and B. Tanguy, Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel, J. Nucl. Mater, vol.476, pp.231-242, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02381237

S. Pellegrino, P. Trocellier, S. Miro, Y. Serruys, E. Bordas et al., The JANNuS saclay facility: a new platform for materials irradiation, implantation and ion beam analysis, Nuc. Ins. Methods in Phys. B, vol.273, pp.213-217, 2012.

C. Johnson, A. Galonsky, and J. Ulrich, Proton strength functions from (p, n) cross sections, Phys. Rev, vol.109, pp.1243-1254, 1958.

Z. Switkowski, J. Heggie, and F. Mann, Threshold effects in proton-induced reactions on copper, Aust. J. Phys, vol.31, pp.253-265, 1978.

J. Ziegler, M. Ziegler, and J. Biersack, SRIM -the stopping and range of ions in matter, Nuc. Ins. Methods in Phys. B, vol.268, pp.1818-1823, 2010.

R. Stoller, M. Toloczko, G. Was, A. Certain, S. Dwaraknath et al., On the use of SRIM for computing radiation damage exposure, Nuc. Ins. Methods in Phys. B, vol.310, pp.75-80, 2013.

, Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-particle Irradiation

J. Hallai and S. Kyriakides, Underlying material response for Lüders-like instabilities, Int. J. Plast, vol.47, pp.1-12, 2013.

A. Weck and D. Wilkinson, Experimental investigation of void coalescence in metallic sheets containing laser drilled holes, Acta Mater, vol.56, pp.1774-1784, 2008.

C. Cea,

T. Helfer, B. Michel, J. Proix, M. Salvo, J. Sercombe et al., Introducing the open-source MFront code generator: Application to mechanical behaviors and materials knowledge management within the PLEIADES fuel element modelling platform, Comput. Math. Appl, vol.70, pp.994-1023, 2015.

Y. Alinaghian, M. Asadi, and A. Weck, Effect of pre-strain and work hardening rate on void growth and coalescence in AA5052, Int. J. Plast, vol.53, pp.193-205, 2013.

M. Nemcko, H. Qiao, P. Wu, and D. Wilkinson, Effects of void fraction on void growth and linkage in commercially pure magnesium, Acta Mater, vol.113, pp.68-80, 2016.

J. Besson, Continuum models of ductile fracture: a review, Int. J. Damage Mech, vol.19, pp.3-52, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550957

V. Neustroev and F. Garner, Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling, J. Nucl. Mater, vol.386, issue.388, pp.157-160, 2009.

X. Han, J. Besson, S. Forest, B. Tanguy, and S. Bugat, A yield function for single crystals containing voids, Int. J. Solid Struct, vol.50, pp.2115-2131, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830364

C. Ling, J. Besson, S. Forest, B. Tanguy, F. Latourte et al., An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations, Int. J. Plast, vol.84, pp.58-87, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357790

A. Mbiakop, A. Constantinescu, and K. Danas, An analytical model for porous single crystals with ellipsoidal voids, J. Mech. Phys. Solid, vol.84, pp.436-467, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219387