G. R. Odette, M. J. Alinger, and B. D. Wirth, Recent developments in irradiationresistant steels, Annu. Rev. Mater. Res, vol.38, issue.1, pp.471-503, 2008.

S. J. Zinkle and L. L. Snead, Designing radiation resistance in materials for fusion energy, Annu. Rev. Mater. Res, vol.44, issue.1, pp.1545-4118, 2014.

S. J. Zinkle, Challenges in developing materials for fusion technology -past, present and future, Fusion Sci. Technol, vol.64, issue.2, p.65, 2013.

S. J. Zinkle, H. Matsui, D. L. Smith, A. F. Rowcliffe, E. Van-osch et al., Research and development on vanadium alloys for fusion applications, J. Nucl. Mater, vol.258, issue.98, pp.269-273, 1998.

T. Muroga, T. Nagasaka, A. Iiyoshi, A. Kawabata, S. Sakurai et al., Nifs program for large ingot production of a V-Cr-Ti alloy, 9th International Conference on Fusion Reactor Materials) ISSN, vol.283, pp.281-287, 2000.

R. J. Kurtz, K. Abe, V. M. Chernov, D. T. Hoelzer, H. Matsui et al., Recent progress on development of vanadium alloys for fusion, Proceedings of the 11th International Conference on Fusion Reactor Materials (ICFRM-11), vol.329, 2004.

R. E. Gold and D. L. Harrod, Refractory metal alloys for fusion reactor applications, J. Nucl. Mater, vol.85, pp.90359-90362, 1979.

, Dissociation energy of He and vacancy from HenVm clusters, in V (left panel) and Ta (right panel), as a function of n/m ratio. Configurations with the lowest formation energy are taken as references

M. A. Kirk, R. C. Birtcher, and T. H. Blewitt, Measurements of neutron spectra and fluxes at spallation-neutron sources and their application to radiation effects research, J. Nucl. Mater, vol.96, pp.90216-90222, 1981.

Y. Dai, G. R. Odette, and T. Yamamoto, 06 -the effects of helium in irradiated structural alloys, Comprehensive Nuclear Materials, vol.1, pp.141-193, 2012.

H. Matsui, M. Tanaka, M. Yamamoto, and M. Tada, Embrittlement of vanadium alloys doped with helium, J. Nucl. Mater, vol.191, pp.919-923, 1992.

D. Kaletta, Low-cycle irradiations of vanadium with 2 mev helium ions at elevated temperatures, J. Nucl. Mater, vol.76, pp.221-223, 1978.

A. V. Federov, G. P. Buitenhuis, A. Van-veen, A. I. Ryazanov, J. H. Evans et al., Helium desorption studies on vanadium and V-5Ti and V-3Ti-1Si alloys and their relevance to helium embrittlement, J. Nucl. Mater, vol.227, issue.3, pp.312-321, 1996.

S. R. Bhattacharyya, T. K. Chini, and D. Basu, Transmission electron microscope studies of tantalum irradiated by mev energy a particles, J. Mater. Sci. Lett, vol.16, issue.7, pp.577-579, 1997.

M. Heerschap, E. Schüller, B. Langevin, and A. Trapani, Helium gas bubbles in vanadium, J. Nucl. Mater, vol.46, issue.2, pp.207-209, 1973.

J. Hua, Y. Liu, H. Li, M. Zhao, and X. Liu, The role of alloying element on the behaviors of helium in vanadium: Ti as an example, Comput. Condens. Matter, vol.3, pp.1-8, 2015.

P. Zhang, J. Zhao, Y. Qin, and B. Wen, Stability and migration property of helium and self defects in vanadium and V-4Cr-4Ti alloy by first-principles, J. Nucl. Mater, vol.413, issue.2, pp.90-94, 2011.

P. Zhang, J. Zhao, Y. Qin, and B. Wen, Stability and dissolution of helium-vacancy complexes in vanadium solid, J. Nucl. Mater, vol.419, issue.1-3, pp.1-8, 2011.

P. Zhang, T. Zou, J. Zhao, P. Zheng, and J. Chen, Effect of helium and vacancies in a vanadium grain boundary by first-principles, Proceedings of the 12th International Conference on Computer Simulation of Radiation Effects in Solids, vol.352, pp.121-124, 2014.

P. Zhang, T. Zou, and J. Zhao, He-he and he-metal interactions in transition metals from first-principles, J. Nucl. Mater, vol.467, issue.1, pp.465-471, 2015.

T. Seletskaia, Y. Osetsky, R. E. Stoller, and G. M. Stocks, First-principles theory of the energetics of he defects in bcc transition metals, Phys. Rev. B, vol.78, p.134103, 2008.

C. Fu, J. D. Torre, F. Willaime, J. Bocquet, and A. Barbu, Multiscale modelling of defect kinetics in irradiated iron, Nat. Mater, vol.4, issue.1, pp.68-74, 2005.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, vol.47, pp.558-561, 1993.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, vol.40, pp.3616-3621, 1989.

G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys, vol.113, issue.22, pp.9978-9985, 2000.

G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys, vol.113, issue.22, pp.9901-9904, 2000.

C. Varvenne, F. Bruneval, M. Marinica, and E. Clouet, Point defect modeling in materials: coupling ab initio and elasticity approaches, Phys. Rev. B, vol.88, p.134102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875386

C. Kittel, Introduction to Solid State Physics, 2004.

C. Fu and F. Willaime, Ab initio study of helium in a-Fe: dissolution, migration, and clustering with vacancies, Phys. Rev. B, vol.72, p.64117, 2005.

K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, High-temperature positron annihilation and vacancy formation in refractory metals, Philos. Mag. A, vol.40, issue.5, pp.701-728, 1979.

C. Janot, B. George, and P. Delcroix, Point defects in vanadium investigated by Mossbauer spectroscopy and positron annihilation, J. Phys. F: Met. Phys, vol.12, issue.1, 1982.

H. Schultz, J. Takamura, M. Doyama, and M. Kiritani, Point defects and defect interactions in metals, Proceedings Yamada Conference V, p.183, 1982.

H. Schaefer, Investigation of thermal equilibrium vacancies in metals by positron annihilation, Phys. Status Solidi (A), vol.102, issue.1, pp.47-65, 1987.

C. S. Becquart and C. Domain, Computer Simulation of Radiation Effects in Solids Proceedings of the Eighth International Conference on Computer Simulation of Radiation Effects in Solids (COSIRES 2006) Computer Simulation of Radiation Effects in Solids, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.255, issue.1, pp.23-26, 2007.

P. M. Derlet, D. Nguyen-manh, and S. L. Dudarev, Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals, Phys. Rev. B, vol.76, p.54107, 2007.

G. Huang, N. Juslin, and B. D. Wirth, First-principles study of vacancy, interstitial, noble gas atom interstitial and vacancy clusters in bcc-w, Comput. Mater. Sci, vol.123, pp.121-130, 2016.

M. Muzyk, D. Nguyen-manh, K. J. Kurzyd?owski, N. L. Baluc, and S. L. Dudarev, Phase stability, point defects, and elastic properties of W-V and W-Ta alloys, Phys. Rev. B, vol.84, 2011.

Y. Oda, A. M. Ito, A. Takayama, and H. Nakamura, First-principles study on migration of vacancy in tungsten, vol.9, p.3401117, 2014.

L. Ventelon, F. Willaime, C. Fu, M. Heran, and I. Ginoux, Ab initio investigation of radiation defects in tungsten: structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals, Microstructure Properties of Irradiated Materials, vol.425, pp.16-21, 2012.

T. Jourdan, J. Bocquet, and F. Soisson, Modeling homogeneous precipitation with an event-based monte carlo method: application to the case of Fe-Cu, Acta Mater, vol.58, issue.9, pp.3295-3302, 2010.

T. Jourdan, F. Soisson, E. Clouet, and A. Barbu, Influence of cluster mobility on cu precipitation in alpha-Fe: a cluster dynamics modeling, Acta Mater, vol.58, issue.9, pp.3400-3405, 2010.

T. Jourdan, G. Bencteux, and G. Adjanor, Efficient simulation of kinetics of radiation induced defects: a cluster dynamics approach, J. Nucl. Mater, vol.444, issue.1-3, pp.298-313, 2014.

E. Clouet, A. Barbu, L. Laé, and G. Martin, Precipitation kinetics of Al 3 Zr and Al 3 Sc in aluminum alloys modeled with cluster dynamics, Acta Mater, vol.53, issue.8, pp.2313-2325, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004518

J. Boutard, S. L. Dudarev, C. Fu, and F. Willaime, Materials subjected to fast neutron irradiation first principles calculations in iron: structure and mobility of defect clusters and defect complexes for kinetic modelling, C.R. Phys, vol.9, issue.3, pp.335-342, 2008.

K. Morishita, R. Sugano, B. D. Wirth, T. Diaz-de-la, and R. , Thermal stability of helium-vacancy clusters in iron, Nucl. Instrum. Methods Phys. Res. Sect. B, vol.202, pp.76-81, 2003.

W. D. Wilson, C. L. Bisson, and M. I. Baskes, Self-trapping of helium in metals, Phys. Rev. B, vol.24, pp.5616-5624, 1981.

G. J. Thomas, W. A. Swansiger, and M. I. Baskes, Low temperature helium release in nickel, J. Appl. Phys, vol.50, issue.11, pp.6942-6947, 1979.

G. J. Thomas and R. Bastasz, Direct evidence for spontaneous precipitation of helium in metals, J. Appl. Phys, vol.52, issue.10, pp.6426-6428, 1981.

V. S. Subrahmanyam, P. M. Nambissan, and P. Sen, Thermal evolution of alphainduced defects and helium bubbles in tantalum studied by positron annihilation, J. Phys. Chem. Solids, vol.57, issue.3, pp.319-323, 1996.

V. S. Subrahmanyam and P. Sen, Helium implanted vanadium studied by the positron annihilation technique, Appl. Radiat. Isot, vol.46, issue.10, pp.981-985, 1995.

A. V. Fedorov, A. Van-veen, and A. I. Ryazanov, Nucleation and growth of heliumvacancy clusters in vanadium and vanadium alloys: V-5Ti, V-3Ti-1Si, V-5Ti-5Cr, J. Nucl. Mater, vol.233, issue.96, pp.32-35, 1996.

R. Li, P. Zhang, C. Zhang, X. Huang, and J. Zhao, Vacancy trapping mechanism for multiple helium in monovacancy and small void of vanadium solid, J. Nucl. Mater, vol.440, issue.1-3, pp.557-561, 2013.

A. Van-veen, H. Eleveld, and M. Clement, Helium impurity interactions in vanadium and niobium, J. Nucl. Mater, vol.212, issue.94, pp.90073-90079, 1994.

M. B. Lewis, Diffusion of ion implanted helium in vanadium and niobium, J. Nucl. Mater, vol.152, issue.2, pp.114-122, 1988.

R. Vassen, H. Trinkaus, and P. Jung, Helium desorption from Fe and V by atomic diffusion and bubble migration, Phys. Rev. B, vol.44, pp.4206-4213, 1991.

H. Ullmaier, P. Ehrhart, P. Jung, and H. Schultz, Atomic defects in metals/Atomare Fehlstellen in Metallen, Numerical Data and Functional Relationships in Science and Technology -New Series/Condensed Matter, 1991.

K. Faber, J. Schweikhardt, and H. Schultz, The intrinsic stage-III annealing in niobium and tantalum following electron irradiation, Scr. Metall, vol.8, issue.6, pp.713-720, 1974.

H. Trinkaus and B. N. Singh, Helium accumulation in metals during irradiationwhere do we stand?, Proceedings of the Second IEA Fusion Materials Agreement Workshop on Modeling and Experimental Validation), vol.323, pp.229-242, 2003.

N. Juslin and B. D. Wirth, Interatomic potentials for simulation of He bubble formation in W, J. Nucl. Mater, vol.432, issue.1-3, pp.61-66, 2013.

J. Boisse, A. Backer, C. Domain, and C. S. Becquart, Modeling of the self trapping of helium and the trap mutation in tungsten using DFT and empirical potentials based on DFT, J. Mater. Res, vol.29, issue.20, pp.2044-5326, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01943690