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Abstract In the context of radioactive waste repository in deep argillaceous geological for
mations studies, the effective diffusion coefficient inside a micro-fracture was computed as 
a function of its saturation level. The micrometric fracture geometry was extracted from the 
host-rock excavated damaged zone surrounding the repository. It was obtained from X-ray 
U-tomography of an Opalinus clay sample from the Mont-Terri laboratory with a 0.7mm 
voxel resolution. The computations were performed using two Two-Relaxation Time lattice 
Boltzmann models. The first one, a phase separation model, was used to extract the con- 
nected liquid structure inside the fracture for a given saturation. The second one, a diffusion 
model, was used to compute diffusion in the liquid and to calculate the effective diffusion 
coefficient for the associated saturation. The calculated curve depicting the effective dif
fusion dependence on saturation was found to be quasi-linear and to qualitatively match a 
Maxwell expression for saturations lower than 0.8.

Keywords Lattice Boltzmann method • Effective diffusion • Clay • Unsaturated • Fracture

1 Introduction

In the context of high-level long-lived radioactive waste management, deep geological repos
itory is considered as a potential solution by several countries. In France, the geological layer 
of interest is the Callovo-Oxfordian indurated argillite (Delay et al., 2007) as in Switzerland, 
the Opalinus Clay, an Aalenian shale is of concern (Marschall et al., 2005). Those Jurassic 
clays were selected as potential host-rocks mainly because of their low permeability and

A. Genty
Den-Service de thermo-hydraulique et de mécanique des fluides (STMF), CEA, Université Paris-Saclay, F-
91191 Gif sur Yvette, France
Tel.: +33-1-69088357
Fax: +33-1-69085242
E-mail: alain.génty@céa.fr

S. Gueddani
Institut de Radioprotection et de Sûrete Nucleaire, IRSN, LETIS, F-92262, Fontenay-aux-Roses, France 

M. Dymitrowska
Institut de Radioprotection et de Sm^te Nucleaire, IRSN, LETIS, F-92262, Fontenay-aux-Roses, France



2

their high radionuclides rétention capacity and a large set of works were devoted to their 
properties and behavior characterization over the last thirty years.

In the framework of geological repository performance assessment, the migration of 
radionuclides from the waste towards the biosphere and the identification of preferential 
pathway is a key point. The building of a repository inside indurated clays will induce the 
formation of an Excavation Damaged Zone (EDZ) around the drifts, galleries and vaults. 
Inside the EDZ, fractures of different size are created inside the clay matrix due to hydro- 
mechanical decompression (Matray et al., 2007). The EDZ and especially the fracture net
work may form a preferential diffusion pathway for some radionuclides as, in particular, the 
ones that hardly diffuse inside the clay matrix like big radius anions (Dagnelie et al., 2015) 
or those incorporated into colloidal particles (Alonso et al., 2011).

The saturation state of the EDZ fractures is expected to vary during the repository life 
from almost unsaturated state during the construction and the operation phase due to desatu- 
ration process of the geological media in contact with ventilation air (Matray et al., 2007) to 
a resaturated state reached several tens of thousand years after the repository closure (Poller 
et al., 2011). In between, anaerobic corrosion of the waste canisters’ steel is expected to 
produce hydrogen (Xu et al., 2008) which may induce two-phase flow inside EDZ (Croise 
et al., 2011; Poller et al., 2011) and decrease the fractures’ saturation level.

Radionuclide transport simulations performed in the repository performance assessment 
context then need to take into account the saturation state of the EDZ fractures. As the main 
transport process expected to occur in very low permeable media such as argillaceous media 
of interest is diffusion (Rubel et al., 2002; Patriarche et al., 2004), the saturation state of the 
porous media is accounted for inside the used macroscopic numerical models through the 
use of an effective diffusion coefficient depending on the saturation level of the geological 
media.

The experimental determination of the effective diffusion coefficient as a function of 
saturation is a difficult task and results in dispersed values (Savoye et al., 2010). Numer- 
ical approach thus appeared as an interesting complementary tool. In this work, we used 
two lattice Boltzmann models to perform the computations. The first one, a Two-Relaxation 
Time phase separation model allowing to access liquid phase geometry for different satu
ration state was described in sections 3 and 3.1. The second one, a Two-Relaxation Time 
diffusion model that allows to calculate the effective diffusion coefficient for a given satura
tion is described in sections 3 and 3.2. We then focus on the geometry of one EDZ fracture 
with micrometric aperture obtained from ^-tomography imaging described in section 4. The 
results obtained are presented in section 5 and 5.1 and discussed in section 6.

2 Effective diffusion in unsaturated porous media

Macroscopic diffusive transport process in unsaturated porous media is described by the dif
fusion equation (1) (Marsily, 1986; Bear and Bachmat, 1991) derived from the combination 
of the balance equation and Fick’s law for the solute

OQC
= div(De(9)VC) (1)

ot

where d [m3 ■ m-3] is the water content, C [mol ■ m-3] is the solute concentration, t [s] is time 
and De [m2 ■ s-1] is the solute effective diffusion coefficient.

In practice, the effective diffusion coefficient De is found to be lower than the molecular 
diffusion coefficient D0 [m2 ■ s-1] and a large amount of works have aimed at linking the
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De/Do ratio to porosity and saturation (or water content) (van Brakel and Heertjes, 1974; 
Epstein, 1989; Boudreau, 1996; Saripalli et al., 2002; Hu and Wang, 2003; Shen and Chen, 
2007; Ghanbarian et al., 2013). Following van Brakel and Heertjes (1974), the effective 
diffusion coefficient can be written as (2)

5
De = 0Dp = 0-r D0 (2)

t2

where Dp [m2 ■ i-1] is the pore diffusion coefficient, and geometric factors 5 [—] and t 
[—] are the constrictivity factor and the diffusive tortuosity respectively (Voutilainen et al., 
2013).

The diffusive tortuosity factor accounts for the fact that the diffusive pathway along a 
given interval is larger in a porous medium than in free water due to the presence of the 
solid. The t value is then larger than one and increases as the diffusive pathway length 
increases. The constrictivity factor accounts for the fact that along a given diffusive pathway 
the diffusion cross-section can vary and that diffusion is limited by the narrowest throat 
sections. The 5 value is then lower than one and decreases as the ratio of the smallest throat 
cross-section to the mean cross-section decreases.

Numerous models for De dependence on porosity and saturation are available in litera- 
ture (see van Brakel and Heertjes (1974); Hu and Wang (2003); Moldrup et al. (2004); Shen 
and Chen (2007); Ghanbarian et al. (2013) for reviews) and the most common used one is 
the Archie’s law (Archie, 1942) given by (3)

De = SnwmD0 (3)

where w [—] is the porosity, S [—] is the saturation defined as 9/ w, n and m are param- 
eters. Note that m (the ”cementation exponent” linked to porosity) and n (the ”saturation 
exponent”) are found to vary from 1 to 3 in literature with an average value around 2 for 
real porous media (See Hamamoto et al. (2010) for a review). It is to mention that theo- 
retical works on effective diffusion dependence on saturation are still currently of interest 
(Ghanbarian et al., 2015; Yang et al., 2016).

In this work, we used TRT Lattice Boltzmann models to compute effective diffusion 
coefficient De (S) as a function of saturation for a fracture geometry extracted from the ex- 
cavated damaged zone of an indurated clay following an identical procedure as the one 
described in Chau et al. (2005), Zhang et al. (2012) and Genty and Pot (2014).

3 TRT lattice Boltzmann Models for two-phase distribution and diffusion 
computations

We choose to use a Two Relaxation Time lattice Boltzmann model (Ginzburg, 2005; Ginzburg 
et al., 2008; Humiere and Ginzburg, 2009) to simulate the liquid and gas phases distribution 
inside our fracture geometry and to compute the diffusion of a non-reactive solute in the 
liquid. The properties of the used lattice Boltzmann models are described as synthetically as 
possible hereafter and the reader can refer to Genty and Pot (2013, 2014) for more details.

The lattice Boltzmann models mimic the microscopic movement of discrete fluid parti- 
cles through an evolution equation describing local collisions of distributions of populations,
{fq}, at the nodes, r, of a fixed lattice, and further propagation of the populations to neigh- 
bour nodes, according to their unit microscopic velocity vector, {cq}. The microscopic ve- 
locity vectors set is composed of the Q vectors {cq} = {cqa, a = 1,, d, q = 0,..., Q — 1},
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where d is the space dimension of the lattice. In the TRT scheme, link-basis vectors are 
constructed for each pair of opposite velocities, cq and cq (cq = - cq) so that the collision 
operator can be divided into its symmetric (even) and anti-symmetric (odd) parts (Ginzburg, 
2005). The TRT evolution equation of the fluid then writes (Ginzburg et al., 2008):

Zq(r + cq,t + 1) = fq(r,t) + Xen+ + Xonq + Sq , q 0, •••, Q -1,

n± = f±- e±, fq = f+ + f-, f± = 2 (fq ± fq), C0 = 0, f = f+, f- = 0 (4)

k=N
S- = t*q Z (Cq • Fk), k = 1,..., N 

k=1

where {e±} are prescribed equilibrium functions, {S-} is a sink or source term, t* are the 
isotropic weights of the population distribution, and Fk are force components.

Stability conditions of the model impose that the eigenvalue functions Le and Lo of the 
two eigenvalues of the TRT collision operator, Xe and Xo are positive (Ginzburg et al., 2008):

Le = -( 2 + Te ),Ao = -( 1 + XOo ) 
Leo = LeLo, 2 < Xe, Xo < 0 (5)

The following equilibrium functions, e±, were used to model the Stokes and diffusion 
equations (Ginzburg et al., 2008):

Q-1e+ = e0 = p - Z e+, e+
q=1

eq = tqJ • Cq

tqC1sp, q = 1, •••, Q - 1,
(6)

where p and J are the microscopic mass and momentum quantities defined from the local 
populations fq and calculated at each node r according to:

Q-1 Q-1
p = Z -fq1 J = pu = Z fqcq

q=0 q=0

where u is the macroscopic velocity and cs = 1/3 the sound velocity.

(7)

3.1 Two-phase TRT lattice Boltzmann model

On the basis of the generic lattice Boltzmann model described in section 3, the liquid-gas 
phases distributions were simulated using the 3D nineteen-velocities model (D3Q19) where 
the weights are t/ = 1/6, tql = 1/12, with the Roman numbers equal to || cq ||2 and Xe is calcu
lated from the kinematic viscosity of the liquid v = (1 /3)Le for the case of incompressible 
Stokes flow.

Following Genty and Pot (2013) we arbitrarily set v = 1 /6 [l.u.]2 • [tu.]-1 and we used 
Leo = 3/16 as this value gives exact Poiseuille profile between parallel plates (Ginzburg and 
d’Humieres, 2003). The Xo value was then calculated from equation (5). We used two force 
components in our model: FG to simulate the attractive fluid-fluid short-range interactions 
that describe surface tension effects and F^ the attractive or repulsive fluid-solid interactions 
that simulate hydrophilic of hydrophobic surfaces.
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The fluid-fluid attractive interaction force, Fg, was defined according to Shan-Chen ap- 
proach (Shan and Chen, 1993, 1994) along:

FG = -y(r, t) £tGqGy(r + Cq, t)Cq (8)

q

where G < 0 is the parameter that controls the attractive interaction strength, y is a potential 
function that depends on the macroscopic density, p, and can be varied arbitrarily, with 
y(p) = 1 — exp(-p(r, t)) (Raiskinmaki et al., 2000) and the weights tGq are tG0 = 0,tGj = 
2, tGjJ = 1 (Raiskinmaki et al., 2000).

The solid-fluid interaction force, Fw, was defined according to Martys and Chen (1996) 
and Raiskinmaki et al. (2000):

Fw = —y(r,t) X tWqWs(r + cq, t)cq (9)
q

where s = 0 or 1 if the site r is fluid or solid, respectively, W is the parameter that controls 
the hydrophobicity of the solid surface and the weights tWq are set to tWj0* = 0, t^j = 2, 
twjJ = 1 (Raiskinmaki et al., 2000).

The resulting numerical model was extensively tested in Genty and Pot (2013) and was 
found to mimic the liquid-gas phase separation process of a binary fluid. The modeled phase 
separation process appears to be similar to a physical spinodal decomposition process (Ap
pert and Zaleski, 1990) where final steady state is controlled by surface tension forces. The 
described model was successfully applied to the simulation of real air-water distribution in 
soil pores (Pot et al., 2015).

3.2 Diffusion TRT lattice Boltzmann model

On the basis of the generic lattice Boltzmann model described in section 3, diffusion of a 
non-reactive solute in the liquid phase was simulated using the 3D seven-velocities model 
(D3Q7) where the weights are t/ = 1/2 and 1o is set according to the molecular diffusion
coefficient of the solute in liquid phase D0 = — c2s ^2 + l-). Following Pot et al. (2010) we

usedDo = 0.5 [l.u.]2 • [t.u.]—1. We fixed Leo = 1 /32 and calculated 1e from equation (5). As 
the solute is non reactive, the source term Sq = 0. Note that in the case of diffusion only, the 
macroscopic velocity is set to zero, so that J = 0.

4 Fracture description

The micro-fracture used in this work originated from the Opalinus Clay of the Mont Terri 
Rock laboratory in Switzerland. The fracture was chosen among the available fracture ge- 
ometries obtained from X-ray ^-tomography of clay samples collected inside the EDZ sur- 
rounding the borehole of the Ventilation Experiment II (Mayor et al., 2007).

4.1 General description

The selected fracture was observed inside a cubic-millimeter volume of a clay sample. It 
was a mainly planar sub-horizontal fracture with a mean aperture of about 6 jim. The initial
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image of the fracture was obtained from high resolution X-ray tomography performed with 
the radiation provided by the European Source of Synchrotron radiation and the techniques 
of the ID 19 line dedicated to micro-tomography (ESRF Grenoble, France). The Synchrotron 
operates with a high current and a very intense flow of photons that allows as short as 
possible acquisitions. The use of a FReLon camera CCD 14 bits developed specifically and 
suitable optics makes it possible to obtain sizes of pixels from 40 to 0.4 pm. The resolution 
reached for our sample was 0.7 mm with a total dimension of about 10003 voxels. The 3D 
picture was constituted of voxels of different grey levels characterizing the X-ray adsorption 
coefficient of the voxel material. The fracture was then distinguished from the clay matrix 
using a thresholding operation.

4.2 Geometry for LBM computations

From the initial 3D i-tomography picture, we extracted a sub-part of the fracture and mir- 
rored it in the x direction. The fracture geometry used for our LBM computations was then 
included in a 100 x 152 x 18 [lu]3 LBM network presented in Figure 1. Note that the z di-

Fig. 1 Fracture geometry with voxels representation (left) and local aperture in pm (right).

rection was reduced as much as possible in order to remove a large volume of clay matrix 
where flow and diffusion are not considered. The fracture was mirrored in the x direction 
that we choose as main diffusion direction computation for LBM symmetry purpose. The 
porosity of the selected sample volume was w = 0.256.

5 Saturation calculation

The saturation computations were performed on the fracture geometry presented in Figure 
1 using the lattice Boltzmann phase separation model briefly described in section 3.1. The 
main model parameters values used to perform the phase separation computations were 
G = -0.16 and W = 0.15 (we considered here fully wetting walls) (Genty and Pot, 2014). 
At initial time, a density pjnjt was imposed inside the void space of the fracture. The presence
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of the wetting walls induced spontaneous phase séparation leading to a low density phase 
(gas) and a higher density phase (water). The computed saturation S in the void space was 
expected to followthe analytical expression S = (pinit —
phase diagram described in Genty and Pot (2013) (for G = —0.16, theoretical gas and liquid 
densities are ph = 0.03 and pfhq = 2.42 respectively) and from mass conservation (the total 
mass of the initial fluid of density pinit must be equal to the sum of the mass of the low 
density phase and the high density phase). We noticed that after steady state was reached the 
maximum and minimum calculated density values were slightly different than the theoretical 
ones and that phase separation did not occur for initial densities close to the phase diagram 
boundary densities. But it is to note that the theoretical phase diagram described in Genty 
and Pot (2013) is valid without walls and with an initial density pinit = ln2 only. We also 
noticed that small negative densities that we attributed to gas phase were obtained at few 
lattice nodes.

Density values pinit were selected in the range — 0.6 - 1.8 to perform the phase separa- 
tion. For some representative saturations S, the distribution of calculated gas bubbles inside 
the fracture are presented in Figure 2.

On the basis of the calculated liquid-gas distributions inside the pore space, a basic 
thresholding algorithm allowed to extract the liquid phase and the gas phase. The density 
threshold value was set to (pfaj + p^l) /2 — pf^/2 where higher density was considered as 
liquid and lower density as gas. For the diffusion computations, we only took into account 
diffusion in the liquid phase. Note that because the resulting thresholded liquid phase was 
not necessary connected, an additional liquid cluster removal algorithm was applied in order 
to extract the connected liquid phase. In the context of the D3Q7 lattice used for the diffusion 
computations, only connections through voxels faces were considered.

A summary of the connected liquid phase extraction procedure is pictured for S = 0.48 
in Figure 3. We therefore conducted effective diffusion calculation for the liquid phase ge- 
ometries that corresponded to a given final saturation. Note that because of the application 
of the cluster removal algorithm, final saturations can differ from the ones initially calcu- 
lated. For all the selected initial density values pinit, the initial calculated saturation (S) and 
the ones calculated after cluster removal algorithm (Sc) are summarized in Table 1.

Table 1 calculated saturations for selected initial density

pinit 0.60 0.70 0.72 0.73 0.75 0.77 0.78 0.80 0.90 1.00 1.10

S 0.20 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.37 0.42 0.48

Sc 0.00 0.06 0.07 0.07 0.07 0.09 0.19 0.24 0.30 0.39 0.45

pinit 1.20 1.30 1 . 40 1.50 1.60 1.65 1 .70 1 .71 1 . 72 1 . 73 1.75

S 0.54 0.59 0.65 0.71 0.77 0.79 0.84 0.86 0.88 0.94 1.00

Sc 0.52 0.58 0.64 0.70 0.76 0.78 0.83 0.85 0.87 0.94 1.00

5.1 Effective diffusion calculation

For a given liquid phase geometry extracted according to the procedure described in the 
previous section, we computed a tracer diffusion using the diffusion TRT lattice Boltzmann



8

(b) S = 0.30(a) S = 0.25

(c) S = 0.37 (d) S = 0.48

(e) S = 0.54 (f) S = 0.65

(g) S = 0.79 (h) S = 0.88

Fig. 2 3D views of the calculated gas bubble (in green) and corresponding related saturations for several 
initial densities; the solid phase has been removed.
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Fig. 3 Summary of the liquid phase extraction procedure for S = 0.48. Thresholded liquid phase in blue with 
gas bubbles in green (left). Thresholded liquid phase only (center). Thresholded liquid phase after cluster 
removal (only connections through voxel faces are considered) (right).

model briefly described in section 3.2. At initial time, we set a tracer concentration Ci = 1 
inside the liquid in the symmetry plane x = x0 = 50 [l.u.] and a zero concentration every- 
where else. Due to symmetry reasons, diffusion was expected to take place perpendicularly 
to the initial concentration plane and along the x axis. Considering 1D diffusion along x axis 
for an infinite medium with the particular Dirac initial tracer concentration Ci = 1 for x = x0, 
the tracer concentration along x is expected to match the classical analytical expression (10) 
for the diffusion equation (1)

C(x, t )
C0 (x - x0 )2

exp —y/ÂnDpt 4Dpt
(10)

where C0 is the initial solute concentration defined through the initial tracer mass M0 by 
M0 = C0fx0LyLz with fx0 the porosity of plane x = x0 (defined as the number of liquid sites 
over the total number of sites of the plane x = x0 = 50 [l .u.] ), Ly = 152 [l .u.] and Lz = 18 [l .u.].

We first computed diffusion for the fully saturated micro-fracture (S = 1) (Cf. Figure 1) 
over a computation time t = 300 [t.u.] large enough for the concentration plume to diffuse 
through a major part of the micro-fracture volume but small enough to keep a zero con
centration on the edges x = 0 [l.u.] and x = 100 [l.u.] to guarantee the applicability of the 
analytical expression (10) valid for an infinite medium. The computed concentration plume 
inside the liquid at t = 300 [t.u.] is presented in Figure 4.

For each x plane value of our LB network, we calculated the mean concentration as C = 
(Ly,zC(x,y,z))/ fxLyLz and the resulting concentration profile along x is shown in Figure 5.

The pore diffusion coefficient Dp for the saturated micro-fracture was calculated by 
fitting the LBM calculated concentration profile with the analytical expression (10), where 
Dp was varied, through a minimum L2 error objective. The analytical fit presented in Figure 
5 was obtained with a value of Dp = 0.396 [l.u.]2 • [t.u.]—1, that is to say De = 0Dp = 0.256 x 
0.396 = 0.102 [l.u.]2 • [t.u.]—1. Note that according to expression (3), exponent m is then 
equal to m = 1.2 which is close to the value of 1.3 found for unconsolidated sands by Archie 
(1942) and for glass spheres by Friedman (2005).

An identical computation procedure was applied for all the extracted liquid geometries 
corresponding to micro-fracture saturations given in Table 1. Some computed concentration 
plumes at t = 300 [t.u.] are presented in Figure 6 for relevant saturation values.
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Fig. 4 3D view of the tracer concentration plume inside the saturated (S = 1) micro-fracture at t = 300 [t.u.].

0 20 40 60 80 100
x [lu]

Fig. 5 Concentration profiles along x at t = 300 [t.u.] for S = 1.0.

Table 2 reports the effective diffusion coefficients calculated for each saturation as well 
as minimal L2 error for the fit.

Concentration profiles and analytical fits are presented in Figure 7 for relevant saturation 
values (namely S = 0.25, S = 0.30, S = 0.37, S = 0.65, S = 0.84 and S = 0.88).

Except for few values like in S = 0.30 case, a close correspondence was found between 
calculated concentration profiles and analytical fits with low L2 errors (Cf. Table 2). It is to 
note that the poor fit obtained for the S = 0.30 stems from the concentration trapping inside 
dead-end pore close to the symmetry plane (see Figure 6(b)).

The plot of the normalized De (S) is presented in Figure 8.
The trend of the De (S) curve depicted in Figure 8 is quasi-linear with De decreasing 

with decreasing S. The linear trend found is different than the quadratic one described in 
literature for real porous media (See Hamamoto et al. (2010) for a review) but similar to 
the one found for regular porous media made of equal spheres or grains as a function of 
saturation (Martys, 1999; Jones et al., 2003; Genty and Pot, 2014) or porosity (Xuan et al.,
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(c) S = 0.37 (d) S = 0.48

(e) S = 0.54 (f) S = 0.65

(g) S = 0.79 (h) S = 0.88

Fig. 6 3D concentration plume for different saturations at t = 300 [t.u.].
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Table 2 Effective diffusion coefficient

S 0 Dp De L2

1.000
0.939
0.877
0.861
0.836
0.793
0.767
0.709
0.651
0.594
0.540
0.480
0.424
0.367
0.307
0.295
0.289
0.278
0.269
0.263
0.253
0.202

0.256
0.240
0.224
0.220
0.214
0.203
0.196
0.181
0.167
0.152
0.138
0.123
0.109
0.094
0.079
0.076
0.074
0.071
0.069
0.067
0.065
0.052

0.396
0.414
0.424
0.428
0.438
0.338
0.370
0.353
0.317
0.294
0.285
0.255
0.199
0.167
0.200
0.095
0.220
0.092
0.239
0.082
0.235
0.000

0.101
0.099
0.095
0.094
0.094
0.069
0.073
0.064
0.053
0.045
0.039
0.031
0.022
0.016
0.016
0.007
0.016
0.007
0.016
0.005
0.015
0.000

0.02
0.02
0.02
0.02
0.02
0.03
0.04
0.05
0.03
0.03
0.03
0.03
0.06
0.07
0.11
0.29
0.08
0.03
0.07
0.33
0.07

2010; Bertei et al., 2013) suggesting that the studied fracture can be considered as regular 
from a topological point of view with a long-distance correlation structure.

We noticed for saturation S lower than 0.3 an unstable behavior with computations of 
high and low De values for very close saturations values near the disconnection one (w = 
0.20). This behavior is suspected to be linked to the coarse refinement level used to describe 
the fracture geometry. Indeed, for small saturations, a one water voxel difference can results 
in cluster disconnection or not. This point will be carefully investigated in the next section.

6 Discussion

In order to investigate the De behavior observed for saturation S lower than 0.3, a new set 
of computations was conducted on the same fracture geometry but using a 2 times refined 
network. Each initial voxel of Figure 1 (left) is then divided in 8 (0.35mm)3 voxel leading 
to a 200 x 304 x 36 [lu]3 LBM network. We applied to this refined network the same proce
dure than the one previously described. For a selected initial density pinit we first conducted 
a phase separation computation and then a diffusion calculation in the connected fluid ge- 
ometry. We noticed that the new computed gas phase distributions as well as saturation 
values were not strictly equal to the previous ones but remained close for the saturations and 
topologically similar for the gas phase distribution as presented in Figure 9. Those small dif- 
ferences were found to have no noticeable impact on extracted connected liquid topology for 
saturations larger than 0. 4 as shown on Figure 10 (c) and (d). This is obviously not the case 
for saturations lower than 0.4 where despite very similar gas phase distributions for the two 
discretization level, the remaining connected liquid shape is different (see Figure 10 (a) and 
(b)). For the initial discretization level (x1), only simple large connected areas are extracted
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x [lu]

(a) S = 0.25

J,
o

0.07 

0.06 

0.05 

0.04 
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0.02 

0.01 

0
0 20 40 60 80 100

x [lu]

(b) S = 0.30

(c) S = 0.37
x [lu]

(d) S = 0.65

x [lu] x [lu]

(e) S = 0.84 (f) S = 0.88

Fig. 7 Mean concentration profiles along x for several saturations at t = 300 [t.u.].

(see Figure 10(a)) as for the refined discretization level (x2), individual voxels connections 
allowed to extract a more complex and more tortuous geometry (see Figure 10(b)).

The numerical results obtained for the refined fracture network are summarized in Ta
ble 3.

The normalized effective diffusion values computed for the two refinement levels are 
presented in Figure 11.

Figure 11 indicates that the unstable behavior of De observed for saturation lower than 
0.3 disappeared as the lattice refinement increased. This result pointed out that, like for 
any other mesh based method, lattice Boltzmann model computation accuracy is linked 
to the lattice refinement. It is to note that in our case, the main part of the computation 
inaccuracy do not stem from the diffusion calculation part but from the phase distribution
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(d) S ~ 0.65, discretization x2
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(c) S ~ 0.65, discretization x1

Fig. 9 Gas distribution (in green) at different discretization levels for S ~ 0.30 and S ~ 0.65.
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(a) S ^ 0.30, discretization xl (b) S ^ 0.30, discretization x2

(c) S ~ 0.65, discretization xl (d) S ~ 0.65, discretization x2

Fig. 10 Extracted connected liquid topology (in red) at different discretization levels for S ~ 0.30 and S ~ 
0.65.

Table 3 Effective diffusion coefficient computed for refined geometry

Pinit S Sc e Dp De L2

1.75 1.00 1.00 0.256 0.398 0.102 0.02
1.73 0.96 0.96 0.246 0.402 0.099 0.02
1.72 0.96 0.95 0.246 0.403 0.099 0.02
1.71 0.81 0.81 0.208 0.428 0.089 0.02
1 . 70 0.74 0.74 0.190 0.302 0.057 0.09
1.65 0.73 0.72 0.187 0.281 0.053 0.08
1.60 0.70 0.70 0.179 0.319 0.057 0.05
1.50 0.65 0.65 0.167 0.283 0.047 0.08
1.40 0.61 0.60 0.156 0.277 0.043 0.06
1.30 0.56 0.55 0.144 0.216 0.031 0.08
1 . 20 0.51 0.50 0.131 0.209 0.027 0.12
1.10 0.46 0.45 0.118 0.202 0.024 0.18
1.00 0.41 0.40 0.105 0.196 0.021 0.16
0.90 0.36 0.35 0.092 0.173 0.016 0.17
0.80 0.31 0.30 0.079 0.130 0.010 0.22
0.78 0.30 0.29 0.077 0.127 0.010 0.22
0.77 0.30 0.28 0.077 0.125 0.010 0.22
0.75 0.29 0.27 0.074 0.100 0.007 0.20
0.73 0.28 0.26 0.072 0.093 0.007 0.20
0.72 0.27 0.25 0.069 0.091 0.006 0.20
0.70 0.26 0.24 0.067 0.072 0.005 0.23
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computation. Indeed, when pore throats are only represented by few lattice nodes, a one 
voxel difference in liquid-gas interface position can results in a liquid phase disconnection 
and the removal of many water paths from the diffusion process. This effect was clearly 
present with coarse lattice where connected saturation Sc were much lower than the initially 
calculated saturations S (see Table 1 for saturations lower than 0.3) but with the refined 
lattice Sc remains within 10% from S (see Table 3).

Figure 11 confirms that the fit of De(S) using a power law like the one of Archie with 
an exponent n = 1 was broadly relevant. Precisely, we plotted an Archie’s second law in 
the form ((S — Sdis)/(1 — Sdis))n as suggested by Balberg (1986) and Martys (1999) with 
Sdis = 0.2 the saturation corresponding to the disconnection of the liquid phase. Note that the 
classical Maxwell equationDe(Sn) = 2Sn/3 — Sn with Sn = (S — Sdis)/(1 — Sdis) (Maxwell, 
1873) which is close to the Archie’s law using n = 1.3 (Archie, 1942; Friedman, 2005) gives 
a close fit of the computed points for saturations lower than 0.8.

A further analysis of the Figure 11 indicated that the behavior of De can be divided 
in two main parts. The first one is quasi linear with a slow increase of De with S in the 
range 0.8 — 1.0 (points above the Archie line). The second one corresponds to a power law 
(with an exponent slightly larger than 1) in the range 0. 2 — 0. 8 (points below the Archie 
line). We note that the obtained curve with two parts corresponded to the one proposed by 
Ghanbarian et al. (2015) using percolation theory and the Effective Medium Approximation 
with a linear part for saturation greater than 0.8 and a quadratic part for lower saturations. 
Such a linear/quadratic expression was drawn on Figure 11 for comparison purpose and 
found to well match the computed points for high saturation values but to disappointingly 
underestimates the calculated effective diffusion for low saturations.

It is important to emphasize that the results obtained here are valid for diffusion process 
in this particular fracture geometry only. In the real EDZ argillite media, matrix diffusion 
is also of concern and resulting effective diffusion calculation in fracture-matrix system de- 
serve additional work using homogenization and up-scaling techniques. Another limitation
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of the presented results consists in the impossibility for the lattice Boltzmann model to take 
into account water-films thinner than one voxel (0.35mm for the finest lattice used in this 
study). A difference between the effective diffusion coefficient calculated with our model 
and the real one is then maybe of concern for low saturations (Yang et al., 2016).

7 Conclusion

In this work, we presented an application to a realistic fracture of a computation method 
based on two Lattice Boltzmann Models for obtaining of the effective diffusion coefficient 
De as a function of saturation S.

The results obtained for the particular fracture geometry indicated that the De(S) curve 
can be fitted, at first approximation, by a linear Archie’s law with a less than 10% error. 
In order to better fit the data for low saturation values, a Maxwell expression is obviously 
more adequate but underestimate the effective diffusion coefficient of about 20% for sat
urations around 0.8. For a more precise fit of the computed data for high saturations, a 
linear/quadratic curve extracted from the percolation theory with a transition around S = 0.8 
can be used.

The presented methodology appears as a starting point towards a better understanding 
of the diffusion in argillites fractures on the micrometric scale. It can be used to study, from 
a statistical point of view, the effective diffusion coefficient as a function of saturation for 
typical fracture geometries. These geometries can vary from single rough ones similar to 
the fracture used in this work to more complex interconnected rough fractures structures. 
Another aspect would consist in coupling the diffusion in fractures with matrix diffusion 
outside the fracture which would allow to connect the fractures with the isolated pores de- 
tected by the micro-tomography.
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