R. Iaea, Waste Management Profiles: A compilation of data from the waste management database, 2000.

V. Pacary, Etude des procédés de décontamination des effluents liquides radioactifs par coprécipitation : De la modélisation à la conception de nouveaux procédés, 2008.

J. Flouret, Y. Barre, H. Muhr, and E. Plasari, Design of an intensified coprecipitation reactor for the treatment of liquid radioactive wastes, Chem. Eng. Sci, vol.77, pp.176-183, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778453

Y. Barre, C. Lepeytre, and G. Serve, , 2011.

H. Mimura, Removal of radioactive caesium and strontium with zeolite, pp.621-627, 1989.

G. B. Bengtsson, A. I. Bortun, and V. V. Strelko, Strontium binding properties of inorganic adsorbents, J. Radioanal. Nucl. Chem.-Artic, vol.204, pp.75-82, 1996.

A. Merceille, E. Weinzaepfel, Y. Barre, and A. Grandjean, The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes, Sep. Purif. Technol, vol.96, pp.81-88, 2012.

A. Sachse, A. Merceille, Y. Barre, A. Grandjean, F. Fajula et al., Macroporous LTAmonoliths for in-flow removal of radioactive strontium from aqueous effluents: Application to the case of Fukushima, Microporous Mesoporous Mater, vol.164, pp.251-258, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00738323

T. Nakai, S. Wakabayashi, H. Mimura, and Y. Niibori, Evaluation of Adsorption Properties for Cs and Sr Selective Adsorbents, Waste Management Conference, 2013.

D. M. Poojary, R. A. Cahill, and A. Clearfield, Synthesis, crystal-structures, and ion-exchange properties of a novel porous titanosilicate, Chem. Mater, vol.6, pp.2364-2368, 1994.

A. Clearfield, Structure and ion exchange properties of tunnel type titanium silicates, Solid State Sci, vol.3, pp.103-112, 2001.

A. I. Bortun, L. N. Bortun, and A. Clearfield, Evaluation of synthetic inorganic ion exchangers for cesium and strontium removal from contaminated groundwater and wastewater, Solvent Extr. Ion Exch, vol.15, pp.909-929, 1997.

A. Clearfield, D. G. Medvedev, S. Kerlegon, T. Bosser, J. D. Burns et al., Rates of exchange of Cs+ and Sr2+ for poorly crystalline sodium titanium silicate (CST) in nuclear waste systems, Solvent Extr. Ion Exch, vol.30, pp.229-243, 2012.

A. Tripathi, D. G. Medvedev, M. Nyman, and A. Clearfield, Selectivity for Cs and Sr in Nbsubstituted titanosilicate with sitinakite topology, J. Solid State Chem, vol.175, pp.72-83, 2003.

S. Chitra, S. Viswanathan, S. V. Rao, and P. K. Sinha, Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes, J. Radioanal. Nucl. Chem, vol.287, pp.955-960, 2011.

S. F. Yates and P. Sylvester, Sodium Nonatitanate: a Highly Selective Inorganic Ion Exchanger for Strontium, Sep. Sci. Technol, vol.36, pp.867-883, 2001.

A. Clearfield and J. Lehto, Preparation, structure, and ion-exchange properties of Na4Ti9O20 · xH2O, J. Solid State Chem, vol.73, pp.98-106, 1988.

J. Lehto, L. Brodkin, and R. Harjula, SrTreat -A highly effective ion exchanger for the removal of radioactive strontium from nuclear waste solutions, Radioactive Waste Management and Environmental Remediation, 1997.

J. Lehto, L. Brodkin, R. Harjula, and E. Tusa, Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat, Nucl. Technol, vol.127, pp.81-87, 1999.

P. Sylvester, T. Möller, and T. W. Adams, Improved separation methods for the recovery of 82Sr from irradiated targets, Appl. Radiat. Isot, vol.64, pp.422-430, 2006.

D. V. Marinin and G. N. Brown, Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters, Waste Manage, vol.20, pp.545-553, 2000.

T. Kubota, S. Fukutani, T. Ohta, and Y. Mahara, Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon, J. Radioanal. Nucl. Chem, vol.296, pp.981-984, 2013.

A. M. Egorin, T. A. Sokolnitskaya, M. V. Tutov, E. A. Tokar, &. et al., Composite selective sorbents for sea water decontamination from cesium and strontium radionuclides, Dokl. Phys. Chem, vol.460, pp.10-14, 2015.

K. W. Kim, K. Y. Lee, E. H. Lee, Y. Baek, D. Y. Chung et al., A concept for an emergency countermeasure against radioactive wastewater generated in severe nuclear accidents like the Fukushima Daiichi disaster, Nucl. Technol, vol.193, pp.318-329, 2016.

E. A. Behrens, P. Sylvester, and A. Clearfield, Assessment of a sodium nonatitanate and pharmacosiderite-type ion exchangers for strontium and cesium removal from DOE waste simulants, Environ. Sci. Technol, vol.32, pp.101-107, 1998.

G. M. Graziano, Synthesis, Characterization, and ion exchange properties of a sodium nonatitanate, p.87, 1998.

A. Merceille, E. Weinzaepfel, Y. Barre, and A. Grandjean, Effect of the synthesis temperature of sodium nonatitanate on batch kinetics of strontium-ion adsorption from aqueous solution, Adsorption, vol.17, pp.967-975, 2011.

E. Goldish and X. , Diffraction Analysis of Barium-Strontium Sulfate (Barite-Celestite) Solid Solutions, Powder Diffr, vol.4, pp.214-216, 1989.

H. Sitepu and S. R. Zaidi, Structural refinement of BaxSr1-xSO4 using X-ray powder diffraction data, Adv. X-ray Anal, vol.54, pp.1-8, 2011.

H. S. Sherry and H. F. Walton, The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A, J. Phys. Chem, vol.71, pp.1457-1465, 1967.

V. A. Avramenko, V. V. Zheleznov, E. V. Kaplun, T. A. Sokol'nitskaya, and A. A. Yukhkam, Sorption Recovery of Strontium from Seawater, vol.43, pp.433-436, 2001.