R. Hellmann, Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: A study based on the nanometer-scale chemistry of fluid-silicate interfaces, Chem. Geol, vol.294, pp.203-216, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01834914

R. Hellmann, Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion, Nat. Mater, vol.14, pp.307-311, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01929134

E. Ruiz-agudo, C. V. Putnis, C. Rodriguez-navarro, and A. Putnis, Mechanism of leached layer formation during chemical weathering of silicate minerals, Geology, vol.40, pp.947-950, 2012.

D. Daval, R. Hellmann, G. Saldi, R. Wirth, and K. Knauss, Linking nm-scale measurements of silicate surfaces to macroscopic dissolution rate laws: New insights based on diopside, Geochim. Cosmochim. Acta, vol.107, pp.121-134, 2013.

S. Gin, An international initiative on long-term behavior of high-level nuclear waste glass, Mater. Today, vol.16, pp.243-248, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00864925

O. Sissmann, Enhanced olivine carbonation within a basalt as compared to single-phase experiments: Reevaluating the potential of CO 2 mineral sequestration, Environ. Sci. Technol, vol.48, pp.5512-5519, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01403970

W. Li and D. Zhao, An overview of the synthesis of ordered mesoporous materials, Chem. Commun, vol.49, pp.943-946, 2013.

, Van Hove function at t = 500 ns for immobile (dashed) and mobile (solid) water in wc05, wc18, and wc31

, SCiEntifiC REPORTS |, vol.8, p.3761, 2018.

C. Liu, Y. Qu, Y. Luo, and N. Fang, Recent advances in single-molecule detection on micro-and nano-fluidic devices, Electrophoresis, vol.32, pp.3308-3318, 2011.

S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, mcm-41 and sba-15, Phys. Chem. Chem. Phys, vol.8, pp.3223-3231, 2006.

S. Jähnert, Melting and freezing of water in cylindrical silica nanopores, Phys. Chem. Chem. Phys, vol.10, pp.6039-6051, 2008.

J. Deschamps, F. Audonnet, N. Brodie-linder, M. Schoeffel, and C. Alba-simionesco, A thermodynamic limit of the melting/freezing processes of water under strongly hydrophobic nanoscopic confinement, Phys. Chem. Chem. Phys, vol.12, pp.1440-1443, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01214596

I. C. Bourg and C. I. Steefel, Molecular dynamics simulations of water structure and diffusion in silica nanopores, J. Phys. Chem. C, vol.116, pp.11556-11564, 2012.

R. Renou, A. Szymczyk, and A. Ghoufi, Water confinement in nanoporous silica materials, J. Chem. Phys, vol.140, p.44704, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00941127

A. A. Milischuk and B. M. Ladanyi, Structure and dynamics of water confined in silica nanopores, J. Chem. Phys, vol.135, p.174709, 2011.

I. M. Briman, Impact of pore size and pore surface composition on the dynamics of confined water in highly ordered porous silica, J. Phys. Chem. C, vol.116, pp.7021-7028, 2012.

A. Sahasrabudhe, S. Mitra, A. Tripathi, R. Mukhopadhyay, and N. Gupta, Effect of pore characteristics on the dynamics of cyclohexane molecules confined in zsm-5 and mcm-41 molecular sieves: Ftir and qens study, Phys. Chem. Chem. Phys, vol.5, pp.3066-3075, 2003.

A. Faraone, Translational and rotational dynamics of water in mesoporous silica materials: Mcm-41-s and mcm-48-s, J. Chem. Phys, vol.119, pp.3963-3971, 2003.

S. Takahara, N. Sumiyama, S. Kittaka, T. Yamaguchi, and M. Bellissent-funel, Neutron scattering study on dynamics of water molecules in mcm-41. 2. determination of translational diffusion coefficient, J. Phys. Chem. B, vol.109, pp.11231-11239, 2005.

R. Schmidt, E. W. Hansen, M. Stoecker, D. Akporiaye, and O. H. Ellestad, Pore size determination of mcm-41 mesoporous materials by means of 1h nmr spectroscopy, N2 adsorption, and hrem. a preliminary study, J. Am. Chem. Soc, vol.117, pp.4049-4056, 1995.

M. Holmboe and I. C. Bourg, Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature, J. Phys. Chem. C, vol.118, pp.1001-1013, 2013.

S. Gin, Nuclear glass durability: New insight into alteration layer properties, J. Phys. Chem. C, vol.115, pp.18696-18706, 2011.

C. Cailleteau, F. Devreux, O. Spalla, F. Angeli, and S. Gin, Why do certain glasses with a high dissolution rate undergo a low degree of corrosion?, J. Phys. Chem. C, vol.115, pp.5846-5855, 2011.

D. Hou, D. Li, T. Zhao, and Z. Li, Confined water dissociation in disordered silicate nanometer-channels at elevated temperatures: Mechanism, dynamics and impact on substrates, Langmuir, vol.32, pp.4153-4168, 2016.

M. J. Qomi, M. Bauchy, F. Ulm, and R. J. Pellenq, Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates, J. Chem. Phys, vol.140, p.54515, 2014.

D. Hlushkou, A. Svidrytski, and U. Tallarek, Tracer-size-dependent pore space accessibility and long-time diffusion coefficient in amorphous, mesoporous silica, J Phys. Chem. C, vol.121, pp.8416-8426, 2017.

J. Hopf, Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability, Geochim. Cosmochim. Acta, vol.181, pp.54-71, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01287715

F. Angeli, T. Charpentier, M. Gaillard, and P. Jollivet, Influence of zirconium on the structure of pristine and leached soda-lime borosilicate glasses: Towards a quantitative approach by 17 O MQMAS NMR, J. Non-Cryst. Solids, vol.354, pp.3713-3722, 2008.
URL : https://hal.archives-ouvertes.fr/cea-02512525

E. M. Pierce, Experimental determination of the effect of the ratio of b/al on glass dissolution along the nepheline (NaAlSiO4)-malinkoite (NaBSiO4) join, Geochim. Cosmochim. Acta, vol.74, pp.2634-2654, 2010.

M. Collin, Structure of international simple glass and properties of passivating layer formed in circumneutral pH conditions, npj-Materials Degradation, vol.2, p.4, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01707691

S. Gin, Atom-probe tomography, tem and tof-sims study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms, Geochim. Cosmochim. Acta, vol.202, pp.57-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01927249

A. Putnis, Glass corrosion: Sharpened interface, Nat. Mater, vol.14, pp.261-262, 2015.

S. Gin, Origin and consequences of silicate glass passivation by surface layers, Nat. Commun, vol.6, pp.6360-6368, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157456

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.

J. Delaye and D. Ghaleb, Combining two types of molecular dynamics for rapid computation of high-energy displacement cascades. II. application of the method to a 70-kev cascade in a simplified nuclear glass, Phys. Rev. B, vol.71, p.224204, 2005.

A. Abbas, J. Delaye, D. Ghaleb, and G. Calas, Molecular dynamics study of the structure and dynamic behavior at the surface of a silicate glass, J. Non-Cryst. Solids, vol.315, pp.187-196, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00085112

W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys. Rev. B, vol.69, p.134103, 2004.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys, vol.52, pp.7182-7190, 1981.

W. Loewenstein, The distribution of aluminum in the tetrahedra of silicates and aluminates, Am. Mineral, vol.39, pp.92-96, 1954.

T. Ohkubo, Y. Iwadate, K. Deguchi, S. Ohki, and T. Shimizu, Changes in surface structure of sodium aluminoborosilicate glasses during aueous corrosion analyzed by using nmr, J. Phys. Chem. Solids, vol.77, pp.164-171, 2015.

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B, vol.108, pp.1255-1266, 2004.

S. Kerisit, C. Liu, and E. S. Ilton, Molecular dynamics simulations of the orthoclase (001)-and (010)-water interfaces, Geochim. Cosmochim. Acta, vol.72, pp.1481-1497, 2008.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem, vol.91, pp.6269-6271, 1987.

I. Kusaka, Z. Wang, and J. Seinfeld, Binary nucleation of sulfuric acid-water: Monte carlo simulation, J. Chem. Phys, vol.108, pp.6829-6848, 1998.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys, vol.23, pp.327-341, 1977.

M. E. Tuckerman, J. Alejandre, R. López-rendón, A. L. Jochim, and G. J. Martyna, A liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble, J. Phys. A-Math. Gen, vol.39, pp.5629-5651, 2006.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, vol.31, pp.1695-1697, 1985.

R. W. Hockney and J. W. Eastwood, Computer simulation using particles, 1988.

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous. Mater, vol.149, pp.134-141, 2012.

P. Pyykkö and M. Atsumi, Molecular single-bond covalent radii for elements 1-118, Chem. Euro. J, vol.15, pp.186-197, 2009.

F. Franks, Water: A matrix of life, vol.21, 2000.

T. Ohkubo, M. Ibaraki, Y. Tachi, and Y. Iwadate, Pore distribution of water-saturated compacted clay using nmr relaxometry and freezing temperature depression; effects of density and salt concentration, Appl. Clay Sci, vol.123, pp.148-155, 2016.

J. Higgins and J. Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Nature, vol.331, pp.698-699, 1988.

D. Everett, Iupac manual of symbols and terminology: Appendix 2, part 1: Colloid and surface chemistry, Pure Appl. Chem, vol.31, pp.577-638, 1972.

, SCiEntifiC REPORTS |, vol.8, p.3761, 2018.

S. Urata, Molecular dynamics simulation of swollen membrane of perfluorinated ionomer, J. Phys. Chem. B, vol.109, pp.4269-4278, 2005.

S. Cui, A molecular dynamics study of a nafion polyelectrolyte membrane and the aqueous phase structure for proton transport, J. Phys. Chem. B, vol.111, pp.2208-2218, 2007.

A. Venkatnathan, R. Devanathan, and M. Dupuis, Atomistic simulations of hydrated nafion and temperature effects on hydronium ion mobility, J. Phys. Chem. B, vol.111, pp.7234-7244, 2007.

J. E. Enderby, Ion solvation via neutron scattering, Chem. Soc. Rev, vol.24, pp.159-168, 1995.

N. Skipper and G. Neilson, X-ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate, J. Phys. Cond. Matter, vol.1, p.4141, 1989.

M. Howe, The hydration of ions in aqueous solution: Reverse monte carlo analysis of neutron diffraction data, J. Phys. Cond. Matter, vol.2, pp.741-748, 1990.

R. Impey, P. Madden, and I. Mcdonald, Hydration and mobility of ions in solution, J. Phys. Chem, vol.87, pp.5071-5083, 1983.

A. Roder, W. Kob, and K. Binder, Structure and dynamics of amorphous silica surfaces, J. Chem. Phys, vol.114, pp.7602-7614, 2001.