J. E. Anthony, Angew. Chem., Int. Ed, vol.47, p.452, 2008.

M. B. Smith and J. Michl, Annu. Rev. Phys. Chem, vol.64, p.361, 2013.

J. Lee, P. Jadhav, P. D. Reusswig, S. R. Yost, N. J. Thompson et al.,

E. Congreve, T. Hontz, M. A. Van-voorhis, and . Baldo, Acc. Chem. Res, vol.46, p.1300, 2013.

M. J. Peach, M. J. Williamson, and D. J. Tozer, J. Chem. Theory Comput, vol.7, p.3578, 2011.

M. J. Peach and D. J. Tozer, J. Phys. Chem. A, vol.116, p.9783, 2012.

S. Grimme and M. Parac, ChemPhysChem, vol.4, p.292, 2003.

N. Kuritz, T. Stein, R. Baer, and L. Kronik, J. Chem. Theory Comput, vol.7, p.2408, 2011.

K. Lopata, R. Reslan, M. Kowalska, D. Neuhauser, N. Govind et al., J. Chem. Theory Comput, vol.7, p.3686, 2011.

J. S. Sears, T. Koerzdoerfer, C. Zhang, and J. Brédas, J. Chem. Phys, vol.135, p.151103, 2011.

M. E. Casida and M. Huix-rotllant, Annu. Rev. Phys. Chem, vol.63, p.287, 2012.

B. M. Wong and T. H. Hsieh, J. Chem. Theory Comput, vol.6, p.3704, 2010.

R. M. Richard and J. M. Herbert, J. Chem. Theory Comput, vol.7, p.1296, 2011.

T. Leininger, H. Stoll, H. Werner, and A. Savin, Chem. Phys. Lett, vol.275, p.151, 1997.

T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett, vol.393, p.51, 2004.

L. Kronik, T. Stein, S. Refaely-abramson, and R. Baer, J. Chem. Theory Comput, vol.8, p.1515, 2012.

G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari, Phys. Rev. B, vol.90, p.75135, 2014.

R. Baer and D. Neuhauser, Phys. Rev. Lett, vol.94, p.43002, 2005.

E. Livshits and R. Baer, Phys. Chem. Chem. Phys, vol.9, p.2932, 2007.

S. Refaely-abramson, S. Sharifzadeh, N. Govind, J. Autschbach, J. B. Neaton et al., Phys. Rev. Lett, vol.109, p.226405, 2012.

S. Refaely-abramson, S. Sharifzadeh, M. Jain, R. Baer, J. B. Neaton et al., Phys. Rev. B, vol.88, p.81204, 2013.

T. Stein, L. Kronik, and R. Baer, J. Chem. Phys, vol.131, p.244119, 2009.

J. Autschbach, ChemPhysChem, vol.10, p.1757, 2009.

T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc, vol.131, p.2818, 2009.

G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys, vol.74, p.601, 2002.

G. Onida, L. Reining, R. W. Godby, R. D. Sole, and W. Andreoni, Phys. Rev. Lett, vol.75, p.818, 1995.

J. C. Grossman, M. Rohlfing, L. Mitas, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett, vol.86, p.472, 2001.

P. Boulanger, D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput, vol.10, p.1212, 2014.

F. Bruneval, S. M. Hamed, and J. B. Neaton, J. Chem. Phys, vol.142, p.244101, 2015.

D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput, vol.11, p.3290, 2015.

D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput, vol.11, p.5340, 2015.

D. Jacquemin, I. Duchemin, A. Blondel, and X. Blase, J. Chem. Theory Comput, vol.13, p.767, 2017.

M. Rohlfing and S. G. Louie, Phys. Rev. Lett, vol.81, p.2312, 1998.

G. Strinati, Riv. Nuovo Cimento, vol.11, p.1, 2008.

A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, 2003.

S. Hirata and M. Head-gordon, Chem. Phys. Lett, vol.314, p.291, 1999.

M. E. Casida, F. Gutierrez, F. Guan, J. Gadea, D. Salahub et al., J. Chem. Phys, vol.113, p.7062, 2000.

M. R. Silva-junior, M. Schreiber, S. P. Sauer, and W. Thiel, J. Chem. Phys, vol.133, p.174318, 2010.

M. R. Silva-junior, S. P. Sauer, M. Schreiber, and W. Thiel, Mol. Phys, vol.108, p.453, 2010.

F. Bruneval, T. Rangel, S. M. Hamed, M. Shao, C. Yang et al., Comput. Phys. Commun, vol.208, p.149, 2016.

F. Bruneval, Molgw: A slow but accurate many-body perturbation theory code, 2015.

X. Blase, C. Attaccalite, and V. Olevano, Phys. Rev. B, vol.83, p.115103, 2011.

F. Bruneval and M. A. Marques, J. Chem. Theory Comput, vol.9, p.324, 2013.

L. Gallandi, N. Marom, P. Rinke, and T. Körzdörfer, J. Chem. Theory Comput, vol.12, p.605, 2016.

J. W. Knight, X. Wang, L. Gallandi, O. Dolgounitcheva, X. Ren et al., J. Chem. Theory Comput, vol.12, p.615, 2016.

T. Rangel, S. M. Hamed, F. Bruneval, and J. B. Neaton, J. Chem. Theory Comput, vol.12, p.2834, 2016.

J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, vol.77, p.3865, 1996.

T. H. Dunning, J. Chem. Phys, vol.90, p.1007, 1989.

O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett, vol.213, p.514, 1993.

F. Weigend, Phys. Chem. Chem. Phys, vol.4, p.4285, 2002.

J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett, vol.49, p.1691, 1982.

U. Salzner and R. Baer, J. Chem. Phys, vol.131, p.231101, 2009.

M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A, vol.30, p.2745, 1984.

J. P. Perdew and M. Levy, Phys. Rev. B, vol.56, p.16021, 1997.

C. Almbladh and U. Barth, Phys. Rev. B, vol.31, p.3231, 1985.

Y. Shao, Phys. Chem. Chem. Phys, vol.8, p.3172, 2006.

J. R. Platt, J. Chem. Phys, vol.17, p.484, 1949.

E. B. Guidez and C. M. Aikens, J. Phys. Chem. C, vol.117, p.21466, 2013.

K. Hirao, H. Nakano, and K. Nakayama, J. Chem. Phys, vol.107, p.9966, 1997.

M. Parac and S. Grimme, Chem. Phys, vol.292, p.11, 2003.

B. Hajgató, D. Szieberth, P. Geerlings, F. D. Proft, and M. S. Deleuze, J. Chem. Phys, vol.131, p.224321, 2009.

B. Moore, H. Sun, N. Govind, K. Kowalski, and J. Autschbach, J. Chem. Theory Comput, vol.11, p.3305, 2015.

Y. Wang and G. Wu, Int. J. Quantum Chem, vol.108, p.430, 2008.

R. Seeger and J. A. Pople, J. Chem. Phys, vol.66, p.3045, 1977.

R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys, vol.104, p.9047, 1996.

L. Hedin, Phys. Rev, vol.139, p.796, 1965.

R. Zimmermann, Phys. Status Solidi, vol.41, p.23, 1970.

A. B. Trofimov and J. Schirmer, J. Phys. B, vol.28, p.2299, 1995.

E. S. Nielsen, P. Jørgensen, and J. Oddershede, J. Chem. Phys, vol.73, p.6238, 1980.

S. Knippenberg, J. H. Starcke, M. Wormit, and A. Dreuw, Mol. Phys, vol.108, p.2801, 2010.

, 36, and 3.18 eV for 1 L b , from naphthalene to hexacene, respectively, and 5.09, 3.87, 3.04, 2.46, and 2.05 eV for 1 L a . The extended variant [ADC(2)-x] yields poorer results for these excitations. 70 Similar values for the singlet excitations of naphthalene are found in Ref. 72 with a smaller TZVP basis, The calculated singlet energies of the acenes with strict ADC

B. Helmich and C. Hättig, Comput. Theor. Chem, vol.35, 2014.

M. J. Packer, E. K. Dalskov, T. Enevoldsen, H. J. Jensen, and J. Oddershede, J. Chem. Phys, vol.105, p.5886, 1996.

S. P. Sauer, H. F. Pitzner-frydendahl, M. Buse, H. J. Jensen, and W. Thiel, Mol. Phys, vol.113, p.2026, 2015.

, The 1 L a energies of benzene and naphthalene calculated with SOPPA are 5.91 and 4.19, respectively, and 5.77 and 3.97 with SOPPA(CCSD). The corresponding 1 L b energies are 4.63 and 3.78 eV with SOPPA and 4.43 and 3.49 with SOPPA(CCSD). The first triplet energies within SOPPA and the cc-pVTZ basis are 3.73 and 2.68 eV for benzene and naphthalene, respectively, We have compiled the calculated energies with SOPPA-based methods from Ref. 74 with the aug-cc-TZVP basis, which are also found in Ref. 73 with a smaller basis set