J. D. Vienna, J. V. Ryan, S. Gin, and Y. Inagaki, Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glasses, Int. J. Appl. Glass Sci, vol.4, pp.283-294, 2013.

M. Fournier, S. Gin, and P. Frugier, Resumption of nuclear glass alteration: state of the art, J. Nucl. Mater, vol.448, pp.348-363, 2014.

S. Mercado-depierre, M. Fournier, S. Gin, and F. Angeli, Influence of zeolite precipitation on borosilicate glass alteration under hyperalkaline conditions, J. Nucl. Mater, vol.491, pp.67-82, 2017.

W. L. Ebert and J. K. Bates, A comparison of glass reaction at high and low glass surface/solution volume, Nucl. Technol, vol.104, pp.372-384, 1993.

A. Barkatt, P. B. Macedo, B. C. Gibson, and C. J. Montrose, Modelling of waste performance and system release, Mater. Res. Soc. Symp. Proc, vol.44, pp.3-13, 1985.

X. D. Feng, J. K. Bates, E. C. Buck, C. R. Bradley, and M. L. Gong, Long-term comparison of dissolution behavior between fully radioactive and simulated nuclear waste glasses, Nucl. Technol, vol.104, pp.193-206, 1993.

I. S. Muller, Renewal of corrosion progress after long term leaching, Summer Session Proceedings on Glass: Scientific Research for High Performance Containment, pp.269-274, 1997.

W. L. Ebert, A. J. Bakel, and N. R. Brown, Measurement of the glass dissolution rate in the presence of alteration phases, Proceedings of International Conference Nuclear and Hazardous Waste Management, Spectrum'96, pp.453-460, 1996.

S. Ribet and S. Gin, Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media, J. Nucl. Mater, vol.324, pp.152-164, 2004.

S. Gin, The fate of silicon during glass corrosion under alkaline conditions: a mechanistic and kinetic study with the international simple glass, Geochim. Cosmochim. Acta, vol.151, pp.68-85, 2015.

A. Dossier, Argile: Tome Phenomenological evolution of a geological repository, 2005.

I. Mochida, The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine, Zeolites, vol.18, pp.142-151, 1997.

R. Thompson, Molecular Sieves, vol.1, pp.1-33, 1998.

C. A. Rees, J. L. Provis, G. C. Lukey, and J. S. Van-deventer, The mechanism of geopolymer gel formation investigated through seeded nucleation, Colloids Surf. A, vol.318, pp.97-105, 2008.

G. Majano, A. Darwiche, S. Mintova, and V. Valtchev, Seed-induced crystallization of nanosized Na-ZSM-5 Crystals, Ind. Eng. Chem. Res, vol.48, pp.7084-7091, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02403366

Y. Kamimura, K. Itabashi, and T. Okubo, Seed-assisted, OSDA-free synthesis of MTWtype zeolite and "Green MTW" from sodium aluminosilicate gel systems. Microporous Mesoporous Mater, vol.147, pp.149-156, 2012.

Y. Kamimura, OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds, Microporous Mesoporous Mater, vol.163, pp.282-290, 2012.

Y. Kamimura, Crystallization behavior of zeolite Beta in OSDA-Free, seedassisted synthesis, J. Phys. Chem. C, vol.115, pp.744-750, 2010.

Z. Wu, J. Song, Y. Ji, L. Ren, and F. Xiao, Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution, Chem. Mater, vol.20, pp.357-359, 2007.

H. Zhang, Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units, J. Mater. Chem, vol.21, pp.9494-9497, 2011.

B. Xie, Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates, Chem. Commun, vol.47, pp.3945-3947, 2011.

B. Xie, Organotemplate-free and fast route for synthesizing beta zeolite, Chem. Mater, vol.20, pp.4533-4535, 2008.

U. Diaz, V. Fornes, and A. Corma, On the mechanism of zeolite growing: crystallization by seeding with delayered zeolites, Microporous Mesoporous Mater, vol.90, pp.73-80, 2006.

J. K. Bates, M. G. Seintz, and M. J. Steindler, The relevance of vapor phase hydration aging to nuclear waste isolation, Nucl. Chem. Waste Manage, vol.5, pp.63-73, 1984.

J. Neeway, Vapor hydration of SON68 glass from 90°C to 200°C: a kinetic study and corrosion products investigation, J. Non Cryst. Solids, vol.358, pp.2894-2905, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00906331

D. J. Wronkiewicz and K. A. Arbesman, The role of alteration phases in influencing the kinetics of glass dissolution, Mater. Res. Soc. Symp. Proc, vol.608, pp.745-750, 1999.

A. Gauthier, J. Thomassin, and P. Coustumer, Rôle de matériaux zéolitiques lors de l'altération expérimentale du verre nucléaire R7T7, C.R. Acad. Sci. Ser. IIA, vol.329, pp.331-336, 1999.

M. Fournier, P. Frugier, and S. Gin, Effect of zeolite formation on borosilicate glass dissolution kinetics, Procedia Earth Planet. Sci, vol.7, pp.264-267, 2013.

M. Fournier, P. Frugier, and S. Gin, Resumption of alteration at high temperature and pH: rates measurements and comparison with initial rates, Procedia Mater. Sci, vol.7, pp.202-208, 2014.

S. Gin, The controversial role of inter-diffusion in glass alteration, Chem. Geol, vol.440, pp.115-123, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02381000

S. Gin, Atom-probe tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: a multiscale approach to investigating rate-limiting mechanisms, Geochim. Cosmochim. Acta, vol.202, pp.57-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01927249

T. Chave, P. Frugier, A. Ayral, and S. Gin, Solid state diffusion during nuclear glass residual alteration in solution, J. Nucl. Mater, vol.362, pp.466-473, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00204177

Y. Inagaki, T. Kikunaga, K. Idemitsu, and T. Arima, Initial dissolution rate of the International Simple Glass as a function of pH and temperature measured using microchannel flow-through test method, Int. J. Appl. Glass Sci, vol.4, pp.317-327, 2013.

R. J. Donahoe and J. G. Liou, An experimental study on the process of zeolite formation, Geochim. Cosmochim. Acta, vol.49, pp.2349-2360, 1985.

H. Lechert, The pH value and its importance for the crystallization of zeolites, Microporous Mesoporous Mater, vol.22, pp.521-523, 1998.

J. R. Houston, R. S. Maxwell, and S. A. Carroll, Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy, Geochem. Trans, p.10, 2009.

M. Kohoutkova, A. Klouzkova, J. Maixner, and M. Mrazova, Preparation and characterization of analcime powders by X-ray and SEM analyses, Ceram. Silik, vol.51, pp.9-14, 2007.

S. Gin, X. Beaudoux, F. Angéli, C. Jégou, and N. Godon, Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides, J. Non Cryst. Solids, vol.358, pp.2559-2570, 2012.

R. M. Milton, Patent issuing from United States Patent Office

G. D. Gatta, P. Lotti, F. Nestola, and D. Pasqual, On the high-pressure behavior of gobbinsite, the natural counterpart of the synthetic zeolite Na-P2, Microporous Mesoporous Mater, vol.163, pp.259-269, 2012.

S. Hansen, U. Hakansson, and L. Falth, Structure of synthetic zeolite Na-P2, Acta Crystallogr. C Struct. Chem, vol.46, pp.1361-1362, 1990.

E. M. Flanigen, H. Khatami, and H. A. Szymanski, Advances in Chemistry, vol.101, pp.201-229, 1974.

D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use, 1973.

Z. Huo, Synthesis of zeolite NaP with controllable morphologies. Microporous Mesoporous Mater, vol.158, pp.137-140, 2012.

M. Fournier,

R. M. Barrer and B. M. Munday, Cation exchange reactions of zeolite Na-P, J. Chem. Soc. A Inorg. Phys. Theor, pp.2909-2914, 1971.

A. M. Taylor and R. Roy, Zeolite studies IV: Na-P zeolites and the ion-exchanged derivatives of tetragonal Na-P, Am. Mineral, vol.49, pp.656-682, 1964.

S. Gin, Origin and consequences of silicate glass passivation by surface layers, Nat. Commun, vol.6, p.6360, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157456

N. Rajmohan, P. Frugier, and S. Gin, Composition effects on synthetic glass alteration mechanisms: Part 1, Experiments. Chem. Geol, vol.279, pp.106-119, 2010.

J. L. Crovisier, T. Advocat, and J. L. Dussossoy, Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses), J. Nucl. Mater, vol.321, pp.91-109, 2003.

S. Gin and J. P. Mestre, SON 68 nuclear glass alteration kinetics between pH 7 and pH 11.5, J. Nucl. Mater, vol.295, pp.83-96, 2001.

S. Ribet, I. S. Muller, I. L. Pegg, S. Gin, and P. Frugier, Compositional effects on the long-term durability of nuclear waste glasses: a statistical approach, Mater. Res. Soc. Symp. Proc, vol.824, pp.309-314, 2004.

Y. Inagaki, Aqueous alteration of Japanese simulated waste glass P0798: effects of alteration-phase formation on alteration rate and cesium retention, J. Nucl. Mater, vol.354, pp.171-184, 2006.

X. Y. Gan, Long-term product consistency test of simulated 90-19/Nd HLW glass, J. Nucl. Mater, vol.408, pp.102-109, 2011.

M. Fournier, Glass dissolution rate measurement and calculation revisited, J. Nucl. Mater, vol.476, pp.140-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998436

A. J. Regis, L. B. Sand, C. Calmon, and M. E. Gilwood, Phase studies in the portion of the soda-alumina-silica water system producing zeolites, J. Phys. Chem, vol.64, pp.1567-1571, 1960.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.