R. D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and transport equations, Prog. Nucl. Energy, vol.17, issue.3, pp.271-301, 1986.

K. S. Smith, Assembly homogenization techniques for light water reactor analysis, Prog. Nucl. Energy, vol.17, issue.3, pp.303-335, 1986.

A. Hébert, Applied reactor physics, Presses inter Polytechnique, 2009.

R. Sanchez, Assembly homogenization techniques for core calculations, Prog.Nucl. Energy, vol.51, issue.1, pp.14-31, 2009.

R. Sanchez, APOLLO2 Year 2010" (2010), Nucl. Eng. Technol, vol.42, pp.474-499

A. ;. Barreau, . Iid, . Assembly, . Pwruo, and . Oecd-nea, Burn-up Credit Criticality Benchmark, PWR-UO2 Assembly Study of Control Rod Effects on Spent Fuel Composition, 2006.

K. S. Smith, Nodal diffusion methods and lattice physics data in LWR analyses: Understanding numerous subtle details, 2017.

A. Azmy and E. Sartori, Nuclear Computational Science

Z. Xu, J. Rhodes, and K. Smith, Testing 3 -d nodal codes simulate 3/5 for refuling shutdown margin redictions with casmo 5M

T. Fujita, T. Endo-&-akio, and . Yamamoto, A macroscopic cross-section model for BWR pin-by-pin core analysis, Journal of Nuclear Science and Technology, vol.51, issue.3, pp.282-304, 2014.

J. Dufek, Building the nodal nuclear data dependencies in a manydimensional state-variable space, Ann. Nucl. Energy, vol.38, issue.7, pp.1569-1577, 2011.

T. Iwamoto and &. Yamamoto, Advanced Nodal Methods of the Few-Group BWR Core Simulator NEREUS, Journal of Nuclear Science and Technology, vol.36, issue.11, pp.996-1008, 1999.

E. Müller, . Mayhue, . Larry, and B. Zhang, Reactor physics methods development at Westinghouse, Proc. Int. Conf. Nuclear Energy for New Europe, 2007.

M. Onoue, . Kawanishi, . Tomohiro, W. R. Carlson, and T. Morita, Application of MSHIM core control strategy for Westinghouse AP1000 nuclear power plant, GENES4/ANP2003, pp.15-18, 2003.

A. Grossetete, Le pilotage de l'EPR: mode T. Revue générale nucléaire 3, pp.37-41, 2007.

D. Tomatis, A. Galia, S. Pastoris, and I. , DEN, Service d'étude des réacteurs et de mathématiques appliquées, 2017.

T. Bahadir, . Sten-Örjan, S. P. Lindahl, and . Palmtag, SIMULATE-4 multigroup nodal code with microscopic depletion model, Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications Palais des Papes, 2005.

N. Martin, M. Riedmann, and J. Bigot, Latest Developments in the ARTEMIS TM Core Simulator for BWR Steady-state and Transient Methodologies, AREVA, International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 2017.

Y. Li, S. Gao, H. Wu, L. Cao, and W. Shen, PWR few-group constants parameterization analysis, In Progress in Nuclear Energy, vol.88, pp.104-117, 2016.

P. Guimarães and E. Müller, Parameterization of two-group nodal cross section data for POLCA-T BWR transient applications, International Conference on Mathematics, Computational Methods, & Reactor Physics, 2009.

R. D. Mosteller, Impact of moderator history on physics parameters in pressurized water reactors, Nucl. Sci. Eng, vol.98, issue.2, pp.149-153, 1988.

C. H. Lee, Y. J. Kim, J. W. Song, and C. O. Park, Incorporation of a new spectral history correction method into local power reconstruction for nodal methods, Nucl. Sci. Eng, vol.124, issue.1, pp.160-166, 1996.

K. R. Rempe, K. S. Smith-&-a, and . Henry, SIMULATE-3 Pin Power Reconstruction: Methodology and Benchmarking, Nuclear Science and Engineering, vol.103, issue.4, pp.334-342, 1989.

T. Iwamoto and M. Yamamoto, Advanced nodal methods of the few-group BWR core simulator NEREUS, J. Nucl. Sci. Technol, vol.36, issue.11, pp.996-1008, 1999.

D. M. Baturin and S. B. Vygovskii, Taking account of the spectral history of fuel burnup during the preparation of the neutron-physical constants for VVER-1000 fuel assemblies, At. Energ, vol.90, issue.4, pp.267-272, 2001.

J. M. Aragonés, Fundamentals of 3-D Neutron Kinetics and Current Status, 2008.

I. Bilodid and S. Mittag, Use of the local Pu-239 concentration as an indicator of burnup spectral history in DYN3D, Annals of Nuclear Energy (Oxford), vol.37, issue.9, pp.1208-1213, 2010.

Y. Bilodid, E. Fridman, and S. Kliem, Microscopic depletion with the correction of microscopic cross section nodeal difussion code DYN3D, 2016.

. Girieud, SCIENCE, Version 2: The Most Recent Capabilities of the Framatome 3D Nuclear Code Package

T. Ida and Y. Tahara, Two group micro-depletion correction model for ALPHA/PHOENIX-P/ANC code system

B. Zhang, T. Ida, and Y. Chao, A study on generic two-group cross-section representation methodology, 2002.

L. &. Mayhue, . Zhang, &. Baocheng, . Sato, &. Daisuke et al., PWR Core Modeling using the NEXUS Once-Through Cross-Section Model, 2006.

E. &. Müller, . Mayhue, &. Larry, and B. Zhang, Reactor Physics Methods Development at Westinghouse, 2007.

R. Sanchez, APOLLO2 Year 2010, Nucl. Eng. Technol, vol.42, pp.474-499, 2010.

M. Coste-delclaux, Modélisation du phénomene d'autoprotection dans le code de transport multigroupe APOLLO2, 2006.

P. D. Taylor and K. J. Rosman, Isotopic composition of the elements, Pure Appl. Chem, vol.70, issue.1, pp.217-235, 1998.