Skip to Main content Skip to Navigation
Journal articles

Na2CO3 and K3PO4 solubility measurements at 30 MPa in near-critical and supercritical water using conductimetry and high pressure calorimetry

Abstract : Knowledge of the phase equilibria and solubility of inorganic salts is crucial to improving the handling of salt precipitation in supercritical water oxidation (SCWO) processes. However, there is little such data in the literature, especially at 30 MPa, the pressure at which the continuous SCWO processes of the CEA (the French atomic energy commission) operate. In this study, the solubility of Na2CO3 and K3PO4 was determined under near-critical and supercritical conditions (320 DC < T < 500 DC, P = 30 MPa) by high pressure differential scanning calorimetry or by measuring the conductivity of samples taken from a high-pressure vessel. This approach enabled different phase changes to be detected for the two salts: direct solid precipitation from the homogeneous fluid phase for Na2CO3, and the appearance of a gas-liquid equilibrium before precipitation for K3PO4. On the whole, the results obtained are in agreement with Valyashko’s classification of binary water/salt systems.
Complete list of metadatas

https://hal-cea.archives-ouvertes.fr/cea-02415660
Contributor : Amplexor Amplexor <>
Submitted on : Tuesday, December 17, 2019 - 11:23:55 AM
Last modification on : Tuesday, April 28, 2020 - 11:28:14 AM

Identifiers

Collections

Citation

G. Lemoine, Ha. Turc, A. Leybros, Jc. Ruiz, Y. Sommer de Gelicourt, et al.. Na2CO3 and K3PO4 solubility measurements at 30 MPa in near-critical and supercritical water using conductimetry and high pressure calorimetry. Journal of Supercritical Fluids, Elsevier, 2017, 130, ⟨10.1016/j.supflu.2017.07.035⟩. ⟨cea-02415660⟩

Share

Metrics

Record views

385