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Abstract—Modern computing applications require more and
more data to be processed. Unfortunately, the trend in memory
technologies does not scale as fast as the computing performances,
leading to the so called memory wall. New architectures are cur-
rently explored to solve this issue, for both embedded and off-chip
memories. Recent techniques that bringing computing as close
as possible to the memory array such as, In-Memory Computing
(IMC), Near-Memory Computing (NMC), Processing-In-Memory
(PIM), allow to reduce the cost of data movement between
computing cores and memories. For embedded computing, In-
Memory Computing scheme presents advantageous computing
and energy gains for certain class of applications. However,
current solutions are not scaling to large size memories and high
amount of data to compute. In this paper, we propose a new
methodology to tile a SRAM/IMC based architecture and scale
the memory requirements according to an application set. By
using a high level LLVM-based simulation platform, we extract
IMC memory requirements for a certain class of applications.
Then, we detail the physical and performance costs of tiling
SRAM instances. By exploring multi-tile SRAM Place&Route
in 28nm FD-SOI, we explore the respective performance, energy
and cost of memory interconnect. As a result, we obtain a detailed
wire cost model in order to explore memory sizing trade-offs. To
achieve a large capacity IMC memory, by splitting the memory
in multiple sub-tiles, we can achieve lower energy (up to 78%
gain) and faster (up to 49% gain) IMC tile compared to a single
large IMC memory instance.

Keywords—In-Memory Computing, Near Memory Computing,
SRAM, interconnect, wire-cost.

I. INTRODUCTION

Performance limitations of modern architectures mostly
come from memory accesses, power and delay, commonly
named as “’the memory wall” [1]. To break this wall, a solution
consists in pushing the processing units as close as possible to
the memory to optimize data movement, also known as data-
centric architectures [2]. Many recent works have shown that
In-Memory Computing (IMC) can relax memory throughput,
increase applications’ performance and reduce energy, by
performing computation within the memory. Indeed, many
works [3-7] change the structure of the memory in order to
perform a pre-computing when the system accesses a data.
Computation is usually completed on the periphery of the
memory and then saved without going through the processor.
Those works show that IMC is commonly used as a bitwise

vector-based accelerator. Using arithmetic operations as [3]
has a significant cost, especially due to carry propagation.
Nevertheless, IMC brings other problems when an application
is scaled up and the amount of memory is increased. We
consider a tiling with multiple memories and an interconnect in
order to estimate performance and energy of an architecture.
However, IMC architectures are not yet able to perform all
necessary computations inside the memory array and control
data movement between several memory instances. One of
the solution consists in adding an accelerator as close as
possible to the memory, also called Near-Memory Computing
(NMC) [8]. In this paper, we study a set of application
according to a given memory size and we show that a single
memory instance is not sufficient to contain large dataset and
multiple memory instances with wire interconnect is require.
Based on this study, we propose a methodology to evaluate the
interconnect cost of data-centric architectures according to an
application set in support of IMC, with the aim of create a wire
model. The novelty of this model allows a more precise sizing
for memory designers and faster estimation compared to a full
Place&Route design flow. The results achieved in this paper,
through the proposed methodology, proves that by splitting the
memory in multiple sub-tiles, we can achieve lower energy (up
to 78% gain) and faster (up to 49% gain) IMC tile compared
to a single large IMC memory instance.

The rest of the paper is organized as follows. In Section II,
we present a classification of data centric architectures in
the state-of-the-art. We present data-dependant applications in
Section III to estimate the amount of computation processed
inside the memory array. In Section IV, we discuss the scalable
architecture we target for exploring IMC applications. Section
V explains the methodology of our interconnect model and
discussions about results. Section VI concludes the paper.

II. RELATED WORK

Several solutions have been studying the data-centric ar-
chitecture. We classify these solutions from a complexity
instruction point of view, as shown in Figure 1, according
to the computation locality in the memory. Moreover, in our
topology we do not consider emerging technologies, as Non
Volatile Memory (NVM), which propose a different approach
to IMC. NMC refers to any accelerator that is integrated near
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the memory to reduce data movement between two or more
memory instances. For the IMC, a part of the calculation
is pre-computed inside the memory between two or more
word-lines via the bit-lines. Then an Arithmetic Logic Unit
(ALU) and a Finite State Machine (FSM) allow the support
of boolean, logical and arithmetic operations at the bottom
of the columns. In related work [4], [6], [9], IMC can only
perform logical operations (AND, OR, XOR, NOT,...) or bit-
serial logical and arithmetical operations [7]. In [5], the authors
pushed further the IMC concept by adding a larger instruction
set to support logical and arithmetic vector operations, in this
paper we call it IMC++. All other complex operations are sent
to be performed directly in the Central Processing Unit (CPU).
We aim to maximize as many computations as possible at the
IMC level in order to minimize data movements.

Security and cryptographic applications have been demon-
strated in [10] and [4] with part of crypto-computation per-
formed inside the memory bit-cell. Speed up can reach 6.8 in
performances and 12.8x in energy saving versus state-of-the-
art crypto benchmarks running on Cortex MO+ architecture.
Other work [9] use machine learning applications able to
perform classification directly inside SRAM memory. Thanks
to Convolutional Neural Network (CNN) topology trained
with MNIST image database, this low-power imager has 13 x
energy saving improvements compared to a standard training
system.

Regarding IMC combined with NMC, we find different
implementations of this solution like in [3], which exhibits
data-centric applications (text processing, databases, check-
pointing) explorations and [11] which explore neural networks,
vision and graph processing. Replacing IMC and NMC inside
a cache hierarchy, increase speed up by 1.9x and reduce
energy by 2.4x compare to a conventional processor with 256-
bit wide vector units.

To conclude, these papers focus on single IMC based
architecture or larger system but without considering detailed
memory interconnects. In this paper, we propose to explore
multiple IMC tile-based architecture, proposing and using a
detailed performance model of interconnected IMC tiles.

III. APPLICATION EXPLORATION FOR IMC

In this section, we explore specific test cases requiring a
majority of logical operations to perform them with IMC
(bitwise only). Through the literature, we found security and
cryptographic applications, pattern matching in a database [12]

or string searching in a text [3] and binary neural networks
applications [13]. Those applications exploit logical operators
that can be efficiently executed inside the memory array.

A. Application exploration for IMC bitwise operations

Advanced Encryption Standard (AES) [10] is a crypto-
graphic applications use for security purposes. One encryp-
tion consists by reading fixed input data blocks of 128-bits,
choosing a key size of 128, 192 or 256 bits and performing
computation steps to obtain an encrypted block of 128 bits.
This cypher text can be decrypted by using the same key size.
Computation steps are performed using AND, SHIFT and XOR
operations.

Boolean Matrix Multiplication (BMM) [14] can be used
in computer vision but also to find the shortest path in oriented
graphs, discrete structures by associating an adjacency matrix
to represent the graph or context-free grammar parsing. This
algorithm uses mostly AND to replace multiplication and OR
to replace addition operators to result a boolean sum.

DNA Pattern Matching [12] includes several algorithms
that can use logical operators to improve performances of bio-
informatic applications. Also called Exact Pattern Matching
or String Searching algorithms, they all try to find a match
of a pattern/string inside a database/text. Pattern and database
are composed of a finite alphabet, which could be changed
according to the applications.

Hamming Distance [12] is an algorithm used in coding
theory and can return a value corresponding to the number of
different symbols present between two strings having the same
length. A derivation of this algorithm, called Hamming weight
or Population count (popcount) is also famous in Binary
Neural Networks and consists to return the number of symbols
that are different from the zero-symbol (e.g. return the number
of ones). Thanks to this features, we can sum binary values
using bitwise operators.

Binary Neural Networks (BNN) [15] are today a new
approach of Neural Network systems that replace n-bits by
1-bit data width (constrained to {-1/+1}) and most of the
arithmetic operators by bitwise operators (e.g. XNOR and
popcount). By reducing the number of weights, they also
reduce the data movement, increase the throughput and save
power and energy.

B. Application exploration in simulation

.. . % of
Applications Logical ops. Other ops. logical ops.
AES and, shift, xor add 66%
BMM and, or add, cmp 50%
DNA Pattern Matching | and, not, or, shift add, sub 50%
Hamming Distance and, shift, xor add, cmp, sub 66%
BNN and, shift, xnor add, cmp, sub 95%

TABLE I: Applications instructions comparison

We explore all those applications by unrolling the program
execution. The idea is to quantify the number of logical
operations used when the program is executed. We have
developed a test environment based on the LLVM Compiler
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Fig. 2 Memory sizing of five test case applications

Infrastructure [16]. We ensure that all applications are opti-
mized and use the maximum number of boolean operations.

In Table I, we present logical operation’s dependencies for
each application. All the applications are using arithmetic
operation for comparing and incrementing the iterators within
the loops of the algorithm. Except for the BNN application,
all the other application include at least 50% of logical
operation, which is the maximum speed up versus a single
core architecture with a SRAM. Thus, the IMC is not sufficient
to accelerate their computation without considering parallel
improvement.

C. Memory requirements

In this study, we target applications with large data memory,
which means that data cannot fit inside a single memory
instance. A memory instance or memory cut is usually com-
posed by an array of bit-cells, sense amplifiers, a column and
row decoder and a control logic. Within the bit-cell array,
columns can be interleaved and the multiplexer (MUX) can
select a column which is related to a data’s address. In Figure
2, we plot two vertical lines corresponding to memory cut
specifications defined by the STMicroelectronics memory cut
explorer:

o vertical orange dotted line: indicates the maximum
memory size available with a single row multiplexer (not
interleaved). In literature, IMC requires this feature to
perform computation of one vector in one cycle, because
operands are stored on the same column line.

o vertical green solid line: indicates the maximum mem-
ory size available. After this size, all designs must be a
composition of different memory instances and we should
consider the wire cost (see Section V).

To satisfy data memory requirements of each application,
we size the memory according to their input parameters.
Regarding these five applications presented in Figure 2, we
can conclude that a single memory instance is, as expected,
not enough to store those data memory sizes, except for AES
application. To obtain a large memory, one can choose to
design a single large memory instance or to design a multiple
instances system with small instance interconnected to each
other. For a single huge memory instance, performance will
be limited by the power supply, RC and sense amplifiers. For
that reason, we build a multiple memory systems using an
interconnect wiring in order to access to data.

In the rest of our study, we develop a wire model to estimate
this interconnect cost.

IV. TOWARDS AN IMC TILE BASED ARCHITECTURE
A. Proposed Architecture

In this paper, we propose a scalable IMC tile-based architec-
ture (Figure 3), inspired by classic Single Instruction Multiple
Data (SIMD) architectures. IMC can be considered as vector
computing because each bit-line performs 1-bit-computation
between two or multiple word-lines. In that perspective, each
operation is comprised of vectors operating in all SRAM
memory instance which support IMC. Those data could be
vectorized and aligned in order to size the data memory. To
explore data centric architecture, we need to evaluate data
movement of applications and develop an interconnect model
to measure performance and energy trade-offs between them.

Figure 3 represents a 2D scalable IMC cluster that is
composed of multiple IMC tiles, themselves composed of
multiple SRAM memory instances supporting IMC. In order
to reduce dynamic power consumption, only the required IMC
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instance is selected by using the adequate low level signaling
(memory chip select and clock gating). In this architecture,
each IMC tile can have its own vector width in order to
perform vector computations of different sizes in parallel.
A host CPU can compute dedicated operation that IMC tile
cannot perform and send IMC instructions for each IMC tile.
Total memory of the cluster can be resized in width by the
maximum vector size of the application and in height thanks
to the total memory requirement. In terms of performance
modeling and computation, we consider an IMC instance like
a standard SRAM memory which is able to perform logical
operations and having the same timing access. Thanks to this
model, we are able to compare a IMC-based with a SRAM-
based architectures.

B. Interconnect and Control challenges

In an IMC tile-based architecture, several assumptions must
be taken into account:

« The memory storage must store the data aligned by vec-
tors in order to perform the same word-line computation
on multiple memory instances,

o All results must be stored in the same memory instance
to avoid data movement between memory instances,

e There must be no data movement between memories in
order to keep synchronization between memory intances.

Vectorization and Parallelism - Thanks to the proposed
IMC architecture [5], we can enable vectorization and par-
allelism by running multiple instances in parallel. Here, the
vectorization allows an acceleration proportional to the size
of the vector used by IMC tile. Indeed, if the operation is
executed in parallel, the size of the vector can theoretically be
as large as desired. Unfortunately, by considering a realistic
interconnect model, the wider the vector, the lower the per-
formance will be. In other words, the vector size is the factor
that will determine the performance of the system.
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V. VALIDATION OF THE INTERCONNECT MODEL

To develop the interconnect model, we explore 22 different
designs of SRAM tile-based architectures with various dimen-
sional parameters and we extract results to create a model. We
use 28nm FD-SOI SRAM memory instance database provid-
ing a range of 10 custom single memory instance optimized
by STMicroelectronics (for a memory size of 64 Bytes up
to 32 kB), interconnected to a 16-bit wide data bus. The
IMC instances are interconnected using standard address/data
protocol while adequate chip select per instance is done to
reduce dynamic power consumption.

Between the actual SRAM and the proposed IMC tile-based
design, the wiring cost will be the same (Figure 5: point D
to point E), but we make the assumption of identical energy
consumption.

A. Evaluation methodology

For each design of this study, we describe every architec-
ture’s behaviours in VHDL then push them to RTL through
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a synthesis and a Place&Route flow, as shown in Figure 4.
After timing extractions, we observe that the Worst Negative
Slack (WNS) time is the path between reading a data from the
memory to the register used in the CPU. Indeed, our critical
reading path is composed of the memory internal delay, net
delay and the logic delay, from point C to point E as shown in
Figure 5. In every designs, we target the optimal symmetrical
tiling, as shown in Figure 6, which has the lower slack time for
the read path and ensure a design density of 75%. To measure
our wiring cost, we consider the path between the point D
to E which include wiring nets and the distribution logic. To
create our model, we change the dimensional parameters for
22 designs as the number of instances, the memory size and the
memory pattern shape. After place and route step, we extract
the total area, timings and power results thanks to Innovus and
PrimeTime Power Cadence softwares.

B. Experimental Results

Figure 7a puts into perspective the performance of multiple
designs composed of 1, 4, 16 and 64 memory instances (cuts).
Each curve uses a fixed number of memory instances for a
given size. For example, to obtain the red curve for a memory
size of 64kB, the architecture is composed of 16 memory
cut of 4kB each. We observe that single cut will have much
better performance if we need small memory sizes but have
higher latency if we scale a larger memory size. Indeed, for
1kB memory size design has a performance gain of 7% when
comparing 1-cut versus 4-cut curves but become 17% better
for the 4-cut design at a memory size of 32 kB. In addition,
the wiring cost is proportional to the number of instances used
(10% of the performance for 1 cut and 25% of the performance
for 4 instances) and this should be taken into consideration.
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Fig. 8 Total energy and area for a sweep of the number of cuts composing
a 32 kB memory. x-axis: number of cuts needed to obtain a memory size of

a 32 kB.

Figure 7b shows the trade-offs between energy and perfor-
mance between designs with varying memory sizes (equivalent
to the number of memory instances). For example, the green
curve represents all designs composed by single to multiple
memory instances for a total memory size of 32kB. If we
design an architecture requiring 32kB of data memory, we
can find the best proposed design by using a 16 multi-cuts of
2kB. We can improve performance by 49% compare to a 128
multi-cuts design and 78% in energy compared to a single cut.

As shown in Figure 8, there are energy trade-offs related to



the number of memory instance for a given memory size. We
note that the wiring energy cost is negligible (represented in
“all other gates” section) in every designs because the power
consumed by the memories is much bigger. Multiple memory
instances designs have a higher static leakage than single
instance. In every designs, only one single memory instance is
accessed (Figure 8: ’single active memory cut energy” section)
an the other memory instances are in idle energy mode (Figure
8: “memory idle energy” section). To conclude, for a memory
size of 32 kB, 16 cuts of 2 kB seem to be the multi-instances
design with the lower energy trade-off and an acceptable area
compared to 512-cut design.

C. Discussions

The study proposed in this paper allows to precisely size our
scalable IMC architecture according to power, performances
and area trade-offs. This wiring cost becomes limiting for the
performance of our IMC cluster. Indeed, the more the required
memory size increases, the more performance decreases. As
we have seen in the Section IV-B there are specific conditions
for the operation of the IMC. The idea is to use NMC as
a processing engine close to the memory in order to solve
the problems of moving data between memory instances in
a multi-IMC architecture, but also dedicated to alignment to
enable vector computations.

VI. CONCLUSION

Architectures implementing data centric computing improve
throughput performance but change the architecture. In order
to propose an optimized architecture for these data-intensive
applications, a precise interconnect cost model is required.
In this paper, we presented a methodology that allows the
exploration and sizing of architecture through a model vali-
dated in a 28nm FD-SOI technology. It is a useful tool for
circuit designers who want to have an accurate estimation
of the wiring cost in a scalable architecture. Applied to the
problem of the memory wall, it shows the gains achieved
through the use of IMC. Indeed, the more memory the
application requires, the higher the wiring cost increases and
the more the performance and power gains with IMC increase.
IMC also brings performance gains through vectorization and
parallelism proportional and equal to at most the number of
memory instances used.

In our future works, we will push the wire cost model fur-
ther and develop a wire cost model for 3D technologies using
emerging technologies in order to find the ideal trade-offs
between the requirements of the applications and a scalable
IMC 3D tile-based architecture.
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