M. D. Ritchie, E. R. Holzinger, and R. Li, Methods of integrating data to uncover genotype-phenotype interactions, Nat Rev Genet, vol.16, issue.2, p.85, 2015.

K. Yugi, H. Kubota, and A. Hatano, Trans-omics: how to reconstruct biochemical networks across multiple omic layers, Trends Biotechnol, vol.34, issue.4, pp.276-90, 2016.

C. Bock, M. Farlik, and N. C. Sheffield, Multi-omics of single cells: strategies and applications, Trends Biotechnol, vol.34, issue.8, pp.605-613, 2016.

S. Chakraborty, M. Hosen, and M. Ahmed, Onco-multi-omics approach: a new frontier in cancer research, Biomed Res, 2018.

Y. Hu, Q. An, and K. Sheu, Single cell multi-omics technology: methodology and application, Front Cell Dev Biol, vol.6, 2018.

K. J. Harber and S. G. Verberk, Van den Bossche J. Going-omics to identify novel therapeutic targets for cardiovascular disease, EBioMedicine, vol.41, pp.7-8, 2019.

J. N. Weinstein, E. A. Collisson, and G. B. Mills, The cancer genome atlas pan-cancer analysis project, Nat Genet, vol.45, issue.10, pp.1113-1133, 2013.

J. Zhang, J. Baran, and A. Cros, International cancer genome consortium data portal-a one-stop shop for cancer genomics data, Database, 2011.

J. R. Whiteaker, G. N. Halusa, and A. N. Hoofnagle, Cptac assay portal: a repository of targeted proteomic assays, Nat Methods, vol.11, issue.7, p.703, 2014.

Y. Hasin, M. Seldin, and A. Lusis, Multi-omics approaches to disease, Genome Biol, vol.18, issue.1, p.83, 2017.

D. S. Rowlands, R. A. Page, and W. R. Sukala, Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity, Physiol Genomics, vol.46, issue.20, pp.747-65, 2014.

Y. V. Sun and Y. Hu, Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases, Adv Genet, vol.93, pp.147-90, 2016.

D. Töröcsik, C. Weise, and J. Gericke, Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients, Exp Dermatol, vol.28, issue.2, pp.177-89, 2019.

J. Zierer, C. Menni, and G. Kastenmuller, Integration of 'omics' data in aging research: from biomarkers to systems biology, Aging Cell, vol.14, issue.6, pp.933-977, 2015.

R. Cavill, D. Jennen, and J. Kleinjans, Transcriptomic and metabolomic data integration, Brief Bioinform, vol.17, issue.5, pp.891-901, 2015.

R. Cavill, J. K. Sidhu, and W. Kilarski, A combined metabonomic and transcriptomic approach to investigate metabolism during development in the chick chorioallantoic membrane, J Proteome Res, vol.9, issue.6, pp.3126-3160, 2010.

Y. Liu, Y. Chen, and A. Momin, Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry, Mol Cancer, vol.9, issue.1, p.186, 2010.

B. Wang, A. M. Mezlini, and F. Demir, Similarity network fusion for aggregating data types on a genomic scale, Nat Methods, vol.11, issue.3, p.333, 2014.

M. D. Burstein, A. Tsimelzon, and G. M. Poage, Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer, Clin Cancer Res, vol.21, issue.7, pp.1688-98, 2015.

B. Palsson and K. Zengler, The challenges of integrating multiomic data sets, Nat Chem Biol, vol.6, issue.11, pp.787-796, 2010.

C. Wu, F. Zhou, and J. Ren, A selective review of multilevel omics data integration using variable selection, Highthroughput, vol.8, issue.1, p.4, 2019.

C. Meng, O. A. Zeleznik, and G. G. Thallinger, Dimension reduction techniques for the integrative analysis of multi-omics data, Brief Bioinform, vol.17, issue.4, pp.628-669, 2016.

G. Tini, L. Marchetti, and C. Priami, Multi-omics integrationa comparison of unsupervised clustering methodologies, Brief Bioinform, vol.20, issue.4, pp.1269-1279, 2017.

M. Bersanelli, E. Mosca, and D. Remondini, Methods for the integration of multi-omics data: mathematical aspects, BMC Bioinform, vol.17, issue.2, p.15, 2016.

S. Huang, K. Chaudhary, and L. X. Garmire, More is better: recent progress in multi-omics data integration methods, Front Genet, vol.8, p.84, 2017.

C. Chauvel, A. Novoloaca, and P. Veyre, Evaluation of integrative clustering methods for the analysis of multi-omics data, Brief Bioinform, 2019.

A. Tenenhaus and M. Tenenhaus, Regularized generalized canonical correlation analysis, Psychometrika, vol.76, issue.2, pp.257-84, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00604496

A. Tenenhaus, C. Philippe, and V. Guillemot, Variable selection for generalized canonical correlation analysis, Biostatistics, vol.15, issue.3, pp.569-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071432

P. Chalise and B. L. Fridley, Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm, PLoS One, vol.12, issue.5, p.176278, 2017.

C. Meng, B. Kuster, and A. C. Culhane, A multivariate approach to the integration of multi-omics datasets, BMC Bioinform, vol.15, issue.1, p.162, 2014.

J. Mariette and N. Villa-vialaneix, Unsupervised multiple kernel learning for heterogeneous data integration, Bioinformatics, vol.34, issue.6, pp.1009-1024, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01738461

D. Ramazzotti, A. Lal, and B. Wang, Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival, Nat Commun, vol.9, issue.1, p.4453, 2018.

R. Argelaguet, B. Velten, and D. Arnol, Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets, Mol Syst Biol, vol.14, issue.6, p.8124, 2018.

D. Wu, D. Wang, and M. Q. Zhang, Fast dimension reduction and integrative clustering of multi-omics data using lowrank approximation: application to cancer molecular classification, BMC Genomics, vol.16, issue.1, p.1022, 2015.

S. Monti, P. Tamayo, and J. Mesirov, Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data, Mach Learn, vol.52, issue.1-2, pp.91-118, 2003.

M. D. Wilkerson and D. N. Hayes, Consensusclusterplus: a class discovery tool with confidence assessments and item tracking, Bioinformatics, vol.26, issue.12, pp.1572-1575, 2010.

T. Nguyen, R. Tagett, and D. Diaz, A novel approach for data integration and disease subtyping, Genome Res, vol.27, issue.12, pp.2025-2064, 2017.

Q. Mo, S. Wang, and V. E. Seshan, Pattern discovery and cancer gene identification in integrated cancer genomic data, Proc Natl Acad Sci U S A, vol.110, issue.11, pp.4245-50, 2013.

C. Meng, D. Helm, and M. Frejno, Mocluster: identifying joint patterns across multiple omics data sets, J Proteome Res, vol.15, issue.3, pp.755-65, 2015.

H. Nguyen, S. Shrestha, and S. Draghici, Pinsplus: a tool for tumor subtype discovery in integrated genomic data, Bioinformatics, vol.35, issue.16, pp.2843-2846, 2018.

P. Bailey, D. K. Chang, and K. Nones, Genomic analyses identify molecular subtypes of pancreatic cancer, Nature, vol.531, issue.7592, p.47, 2016.

R. Shen, Q. Mo, and N. Schultz, Integrative subtype discovery in glioblastoma using icluster, PLoS One, vol.7, issue.4, p.35236, 2012.

M. Hanafi, A. Kohler, and E. Qannari, Connections between multiple co-inertia analysis and consensus principal component analysis, Chemom Intel Lab Syst, vol.106, issue.1, pp.37-40, 2011.

B. Zhu, N. Song, and R. Shen, Integrating clinical and multiple omics data for prognostic assessment across human cancers, Sci Rep, vol.7, issue.1, p.16954, 2017.

N. Aronszajn, Theory of reproducing kernels, Trans Am Math Soc, vol.68, issue.3, pp.337-404, 1950.

B. Wang, J. Zhu, and E. Pierson, Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning, Nat Methods, vol.14, issue.4, p.414, 2017.

E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found Comput Math, vol.9, issue.6, p.717, 2009.

E. G. Williams, Y. Wu, and P. Jha, Systems proteomics of liver mitochondria function, Science, vol.352, issue.6291, p.189, 2016.

S. V. Vasaikar, P. Straub, and J. Wang, Linkedomics: analyzing multi-omics data within and across 32 cancer types, Nucleic Acids Res, vol.46, issue.D1, pp.956-63, 2017.

W. M. Rand, Objective criteria for the evaluation of clustering methods, J Am Stat Assoc, vol.66, issue.336, pp.846-50, 1971.

J. H. Ward, Hierarchical grouping to optimize an objective function, J Am Stat Assoc, vol.58, issue.301, pp.236-280, 1963.

R. A. Harvey and D. R. Ferrier, Lippincott's Illustrated Reviews: Biochemistry, 2011.

E. R. Monsen, Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids, J Acad Nutr Diet, vol.100, issue.6, p.637, 2000.

G. Stelzer, N. Rosen, and I. Plaschkes, The genecards suite: from gene data mining to disease genome sequence analyses, Curr Protoc Bioinformatics, vol.54, issue.1, pp.1-30, 2016.

M. De-tayrac, S. Lê, and M. Aubry, Simultaneous analysis of distinct omics data sets with integration of biological knowledge: multiple factor analysis approach, BMC Genomics, vol.10, issue.1, p.32, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00365978

E. F. Lock, K. A. Hoadley, and J. S. Marron, Joint and individual variation explained (JIVE) for integrated analysis of multiple data types, Ann Appl Stat, vol.7, issue.1, p.523, 2013.

D. M. Witten and R. J. Tibshirani, Extensions of sparse canonical correlation analysis with applications to genomic data, Stat Appl Genet Mol Biol, vol.8, issue.1, pp.1-27, 2009.

P. Kirk, J. E. Griffin, and R. S. Savage, Bayesian correlated clustering to integrate multiple datasets, Bioinformatics, vol.28, issue.24, pp.3290-3297, 2012.

Z. Yang and G. Michailidis, A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data, Bioinformatics, vol.32, issue.1, pp.1-8, 2015.

E. F. Lock and D. B. Dunson, Bayesian consensus clustering. Bioinformatics, vol.29, issue.20, pp.2610-2616, 2013.

, Comprehensive molecular portraits of human breast tumours, Nature, vol.490, issue.7418, pp.61-70, 2012.

M. Charrad, N. Ghazzali, and V. Boiteau, NbClust: an R package for determining the relevant number of clusters in a data set, J Stat Softw, vol.61, issue.6, pp.1-36, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01126479

T. Fawcett, An introduction to ROC analysis, Pattern Recognit Lett, vol.27, issue.8, pp.861-74, 2006.

A. Bissell, The jacknife, J Appl Stat, vol.4, issue.1, pp.55-64, 1977.