H. Ninokata, T. Sawada, H. Tomozoe, H. Endo, and A. Shimizu, A Study on Reacriticality Characteristics of Fast Reactors in Pursuit of Recriticality-Accident-Free Concepts, Progress in Nuclear Energy, vol.29, pp.387-93, 1995.

F. Helm and G. Henneges, Measurments and Calcualtion of Reactivity Effects of Material Rearrangments in a Plutonium-Fueled Fast Reactor Rod Lattice, Nuclear Technology, vol.71, pp.68-81, 1985.

G. Henneges, Validation of Neutronic Codes for Distorted Core Configurations with the SNEAK-12 Critical Assemblies, Nuclear Science 325 and Engineering, vol.100, pp.314-337, 1988.

W. Maschek, A. Rineiski, T. Suzuki, S. Wang, M. Mori et al., SIMMER-III and SIMMER-IV Safety Code Development for Reactors with Transmutation Capability, Mathematics and Computation, Supercomputing, Reactor Physics and Biological Applications, pp.1-14, 2005.

E. Gunther and W. Kinnebrock, SNOW -ein zweidimensionales Sn0 Programm zur Losung der Neutrnentransportgleichung in Platten -und 330

, Zylindergeometrie. Tech. Rep, 1977.

K. Kobayashi, TP2-A computer program for the calculation of reactivity and kinetic parameters by the two dimensional transport perturbation theory, Tech. Rep, 1973.

A. Riyas and P. Mohanakrishnan, ULOF transient behaviour of metal-fuelled fast breeder reactor cores as a function of core size and perturbation methods, Nuclear Engineering and Design, vol.278, pp.141-150, 2014.

T. Suzuki, Y. Tobia, K. Kawada, H. Tagami, J. Sogabe et al., A preliminaru evaluation of unprotected loss-of-flow accident fot a prototype fast-breeder reactor, Nuclear Engineering and Technology, vol.47, issue.3, pp.240-52, 2015.

T. Sawada, H. Ninokata, H. Tomozoe, and H. Endo, Recriticality charecteristics of fast reactors and possibility of precluda recriticality by controlled material relocation, Progress in Nuclear Energy, vol.32, issue.3/4, pp.745-51, 1998.

T. Sawada, H. Ninokata, and H. Tomozoe, A recriticality-free fast reactor core concept, Nuclear Technology, vol.130, issue.3, pp.242-51, 2000.

H. Yamano, S. Fujita, Y. Tobita, I. Sato, and H. Niwa, Development of a three-dimensional CDA analysis code : SIMMER-IV and its first application to reactor case, Nuclear Engineering and Design, vol.238, pp.66-73, 2008.

Y. Toibia, H. Yamano, and I. Sato, Analytical study on elimination of severe recriticality in large smale LMFBRs with enhancement of fuel discharge, Nuclear Engineering and Design, vol.238, pp.57-65, 2007.

K. Konishi, T. Ji, K. Kamiyama, I. Sato, S. Kubo et al., The 345 result of a wall failure in-pile experiment under the EAGLE project, Nuclear Engineering and Design, vol.237, pp.2165-74, 2007.

P. J. Collins and G. Ingram, Simulated meltdown and vapor explosion experiments in ZEBRA 8G and Zebra 12 and their interpretation, Proc. Int. Symp. Physics Fast Reactors, 1973.

R. E. Kaiser, C. L. Beck, and M. J. Lineberry, Simulation of an HCDA sequence on the ZPPR critical facility, Proc. ANS/ENG Mtg. Fast Reactors 350 Safety and Related Physics, 1976.

R. Curtis, C. Kelber, E. Gelbard, L. Lesage, L. Luck et al., The use of benchmark criticals in fast reactor code validation, Proc. Int. Symp. Fast Reactor Physics, 1979.

M. Nakano, H. Tsunoda, and J. Hirota, An Experimental Study of Reactivity Changes and Flux Distortion in Simulated LMFBR Meltdown Cores, Nuclear Science and Engineering, vol.294, pp.283-94, 1984.

P. Blaise, F. Boussard, R. P. Leconte, P. Margulis, M. Martin et al., Advanced small and large core distortion modeling in ZPR to assess core recriticality scenarios of SFR core degradation sequences, Proc. Int. Conf. IGORR-2016, 2016.

F. Helm, The SNEDAX data base -General description and users instruction, Tech. Rep

G. Karlsruhe,

F. Helm, G. Henneges, and W. Maschek, Measurements and Computation of the Reactivity Effects of Accident-Caused Core Distortions in Liquid-Metal Fast Breeder Reactors, Nuclear Science and Engineering, vol.87, pp.295-313, 1984.

X. Team, MCNP -A General Monte Carlo N-Particle Transport Code, Version 5, 2003.

E. Brun, F. Damian, C. M. Diop, E. Dumonteil, F. X. Hugot et al., TRIPOLI-4, CEA, EDF and AREVA reference Monte Carlo code, Annals of Nuclear Energy, vol.82, pp.151-60, 2015.

J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho, The Serpent Monte Carlo code: Status, development and applications in 2013, Annals of Nuclear Energy, vol.82, pp.142-50, 2015.

J. M. Ruggieri, J. Tommasi, J. F. Lebart, C. Suteau, D. Plisson-rieunier et al., ERANOS 2.1: International Code System for GEN IV Fast reactor Analysis, Proc. ICAAP2006, 1973.

J. Tommasi, P. Archier, and G. Rimpault, Sodium void validation with ERANOS on zero power facility experiments, Proc. PHYSOR-2010

P. A. Pittsburg and . Usa, , 2010.

S. Kondo, A. Turutani, and M. Ishikawa, SIMMER-II application and validation studies in Japan for energetic accommmodation of severe LFMBR accidents, Proc. of the Int. Topic Meeting on Fast Reactor Safety, 1985.

G. Kayser and C. E. Cadarache, The reactivity risk in fast reactors and the related international experimental programms CABRI and SCARABEE, Progress in Nuclear Energy, vol.32, issue.3/4, pp.631-639, 2000.

Y. Tobita, H. Yamano, and I. Sato, Analytical study on elimination of severe recriticalities in large scale LMFBRS with enhancement of fuel discharge, Nuclear Engineering and Design, vol.238, pp.57-65, 2008.

B. Barre, The future of CAPRA, 1998.

P. Filliatre, L. Oril, C. Jammes, and L. Vermeeren, Reasons why Plutonium-242 is the best fission chamber deposit to monitor the fast component of high neutron flux, Nuclear Instruments and Methods in Physics Research A, vol.593, pp.510-518, 2008.