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Summary 

The problem of a steady, axisymmetric, fully developed adiabatic bubbly flow in a vertical 

pipe is studied analytically with the two-fluid model. The exchange of momentum between 

the phases is described as the sum of drag, lift, wall and dispersion contributions, with 

constant coefficients.  

Under these conditions, we are able to derive an analytical relation between the void fraction, 

the liquid velocity, and the pressure profiles. This relation is valid independently of the 

turbulence model in the liquid phase – here, a k-ε model is used – and can serve as a 

verification case for multiphase flow codes. 

The analytical void fraction profile vanishes at the wall, as a result of the balance between 

dispersion and wall forces. This profile is illustrated by calculations performed for upward 

and downward bubbly flows with the NEPTUNE_CFD code. 

1. Introduction 

Multiphase flows are encountered in many industrial situations related to nuclear or chemical 

engineering. In order to address the growing need for simulations, the models and numerical 

schemes used in industrial codes need to be properly verified and validated [1,2]. 
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One of the difficulties in the verification of multiphase flow solvers is the coupling between 

phases, which makes the search for analytical solutions more difficult, when compared to 

single-phase flows. 

In this paper, we consider the problem of a (statistically) steady, axisymmetric, fully 

developed adiabatic bubbly flow in a vertical pipe. In the two-fluid formalism [5,6,7], a 

balance equation is written for the mass and momentum of each phase, and the coupling 

between the liquid and the gas is accounted for by an interfacial exchange term in the 

momentum balances. In order to perform an analytical study, simplifying assumptions are 

introduced: 

(i) the flow is statistically steady and fully developed. Variations in the gas and liquid 

densities are therefore neglected. 

(ii) the bubbles all have the same diameter, denoted by db. 

(iii) the interfacial exchange term is the sum of four contributions: drag, lift, wall forces, and a 

dispersion effect proportional to the void fraction gradient. The expressions of these forces 

(see Section 2) are assumed to have constant coefficients. Note that the virtual mass effects do 

not play a role in a developed steady flow. 

Under these conditions, we are able to give an analytical expression for the void fraction 

profile, as a function of the liquid velocity and pressure profiles. In particular, we show that 

the compensation between wall and dispersion forces causes the void fraction to vanish at the 

wall. Note that this equation is valid independently of the chosen turbulence model. Of 

course, because of this generality, it is not possible to give a complete analytical solution, that 

is to express the velocity and pressure profiles as functions of the independent variables x, y, z 

only. In view of this generality, this analytical expression can serve as a verification case for 

multiphase flow codes. 

In Section 3, calculations are performed for upward and downward bubbly flows with the 

NEPTUNE_CFD code [3,4]. NEPTUNE_CFD is a Computational Multi-Fluid Dynamics 

code dedicated to the simulation of multiphase flows, primarily targeting nuclear thermal-

hydraulics applications, such as the departure from nuclear boiling (DNB) or the two-phase 

Pressurized Thermal Shock (PTS). It has been developed within the joint NEPTUNE R&D 

project (AREVA, CEA, EDF, IRSN) since 2001.  

 

 

 

 

2. Presentation of the problem 

 



We consider an adiabatic bubbly flow in a vertical cylindrical pipe with radius R (see Fig 1). 

The flow is assumed to be (statistically) steady, axisymmetric, and fully developed. In 

particular, no phase change occurs, and the variations in the gas and liquid densities are 

neglected. 
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Fig 1 – bubbly flow in a vertical pipe 

 

In all what follows, we denote with subscript g (resp. l) quantities relating to the gas (resp. 

liquid) phase. For k = g or l, the mass balance for phase k writes: 

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘) + ∇. (𝛼𝑘𝜌𝑘𝑉⃗⃗𝑘) = 0                                                                                   (1) 

Because the flow is steady and fully developed, it follows that the radial component of 

velocity 𝑉⃗⃗𝑘   is 0, while its axial component only depends on r. So we can write 

 𝑉⃗⃗𝑘 = 𝑉𝑘(𝑟)𝑒𝑧                                                                    (2) 

 

Now we come to the momentum balance. For the derivation of our analytical relation, the 

momentum balance is written only for the gas phase, in the radial and axial directions. In 

particular it means we need no specific assumption on turbulence in the liquid phase. 

Because the viscosity and density ratios  
𝜇𝑔

𝜇𝑙
⁄ ,  

𝜌𝑔
𝜌𝑙

⁄  are small, we can neglect viscous and 

Reynolds stresses for the gas phase, an assumption that is widely used in theoretical studies, 

see e.g. [5 Chp 11, 8, 9]. 

The momentum balance for the gas phase can then be written: 



𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑉⃗⃗𝑔) + ∇. (𝛼𝑔𝜌𝑔𝑉⃗⃗𝑔𝑉⃗⃗𝑔) = −𝛼𝑔∇𝑃⃗⃗⃗⃗⃗⃗ + 𝛼𝑔𝜌𝑔𝑔⃗ + 𝑀⃗⃗⃗𝑔                   (3) 

In the above equation, 𝑀⃗⃗⃗𝑔 stands for the interfacial momentum exchange term. The modeling 

of this term is now discussed. Then, in Section 3, we write the axial and radial components of 

Equation (3) and derive the analytical relation between the void fraction and the liquid 

velocity and pressure profiles. 

As explained in the introduction, the interfacial momentum transfer term 𝑀⃗⃗⃗𝑔 is written as the 

sum of four contributions: drag, lift, wall, and dispersion force, all of which have constant 

coefficients.  

Because of (2), it can be seen that material derivatives of the form 
𝜕

𝜕𝑡
𝑉⃗⃗𝑘 + (𝑉⃗⃗𝑘. ∇). (𝑉⃗⃗𝑘) 

cancel, so virtual mass contribution is zero. 

In the following, we denote by 

𝑈⃗⃗⃗𝑅 ≡ 𝑉⃗⃗𝑔 − 𝑉⃗⃗𝑙      (4)           

the relative velocity between the phases. 

The drag force 

The contribution of the drag force is expressed in the following way: 

𝑀⃗⃗⃗𝑔

𝐷
= −

3

4
𝛼𝑔𝜌𝑙

𝐶𝐷

𝑑𝑏
|𝑈⃗⃗⃗𝑅|𝑈⃗⃗⃗𝑅                                 (5)    

where db stands for the (constant) bubble diameter, and CD is the drag coefficient, which is 

here assumed to be constant. 

The dispersion force 

The dispersion force, proportional to the void fraction gradient, results in the migration of 

bubbles from high to low void fraction regions. This effect is interpreted as the fluctuating 

part of other forces, in the averaging process leading to the two-fluid model [5, Chp 7].  

Several models have been developed [10, 11, 12, 13, 14] in the literature to take into account 

this diffusive effect. In [10], Davidson expresses it as the product of the drag function and an 

apparent mean drift velocity of the liquid relative to the gas phase: 

𝑀⃗⃗⃗𝑔

𝑑𝑖𝑠𝑝
= −

3

4
𝛼𝑙𝜌𝑙

𝐶𝐷

𝑑𝑏
|𝑈⃗⃗⃗𝑅|𝐷eff∇𝛼𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                       

where Deff is an effective bubble dispersion coefficient, considered as constant. 

The model proposed by Krepper et al. [13] uses the liquid turbulent viscosity 𝜇𝑙
𝑇 

𝑀⃗⃗⃗𝑔

𝑑𝑖𝑠𝑝
= −

3

4

𝐶𝐷

𝑑𝑏
𝜇𝑙

𝑇|𝑈⃗⃗⃗𝑅|∇𝛼𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                              



In [14], Laviéville et al. express the transfer term as a function of the liquid turbulent kinetic 

energy: 

𝑀⃗⃗⃗𝑔

𝑑𝑖𝑠𝑝
= −𝐺𝑇𝐷𝜌𝑙𝑘𝑙∇𝛼𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗             

where GTD is a function of the drag, lift and virtual mass coefficients. 

 

In this part we will adopt the following model, very close to Davidson’s expression 

𝑀⃗⃗⃗𝑔

𝑑𝑖𝑠𝑝
= −

3

4
𝜌𝑙

𝐶𝐷

𝑑𝑏
|𝑈⃗⃗⃗𝑅|𝐷eff∇𝛼𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (6) 

where we simply removed the dependence upon the liquid volume fraction (which can be 

assumed to be approximately 1 in the case of low void fraction). Again, the bubble dispersion 

coefficient 𝐷eff is assumed to be constant. 

The lift force 

The contribution of the lift force is expressed in the following way: 

𝑀⃗⃗⃗𝑔

𝐿
= −𝛼𝑔𝜌𝑙𝐶𝐿 𝑈⃗⃗⃗𝑅 × (rot⃗⃗ ⃗⃗ ⃗⃗  𝑉⃗⃗𝑙)                                 (7)    

where the lift coefficient CL is here assumed to be constant. 

 

The wall force 

The wall force is close to Antal’s model [9]: 

𝑀⃗⃗⃗𝑔

𝑊
= 2𝛼𝑔𝜌𝑙

|𝑈𝑅,|||
2

𝑑𝑏
Max [0, 𝐶𝑊1 + 𝐶𝑊2

𝑑𝑏

2𝑦
] 𝑛⃗⃗𝑊                                 (8) 

where 𝐶𝑊1 = −0.1 and 𝐶𝑊2 = 0.147 are taken as constants, y stands for the distance to the 

wall, and 𝑈𝑅,|| denotes the component of the relative velocity parallel to the wall.  

With this expression, the bubbles are pushed away from the wall if they are at a distance 

𝑦 < −
𝐶𝑊2

2𝐶𝑊1
𝑑𝑏.The Max function guarantees that they are not attracted if 𝑦 > −

𝐶𝑊2

2𝐶𝑊1
𝑑𝑏. 

3. The analytical relation 

 

3.1. Momentum balance for the gas phase in the axial and radial directions 

Using equations (2), (4), (5), (6), (7) and (8), the gas phase momentum balance (3) is now 

projected in axisymmetric cylindrical coordinates.  



From equation (2), the left hand side of the momentum balance, that is, quantity 
𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑉⃗⃗𝑔) + ∇. (𝛼𝑔𝜌𝑔𝑉⃗⃗𝑔𝑉⃗⃗𝑔), is zero. 

Axial direction 

The flow being steady and fully-developed, the axial momentum equation reduces to 

0 = −𝛼𝑔𝜌𝑔𝑔 − 𝛼𝑔
𝜕𝑃

𝜕𝑧
−

3

4
𝛼𝑔𝜌𝑙

𝐶𝐷

𝑑𝑏
|𝑈𝑅|𝑈𝑅     (9) 

Simplifying by the void fraction, it follows that the relative velocity is constant and uniform 

in the pipe, with value given by: 

|𝑈𝑅|𝑈𝑅 = −
4𝑑𝑏

3𝜌𝑙𝐶𝐷
(𝜌𝑔𝑔 +

𝜕𝑃

𝜕𝑧
)      

For bubbly flows, the main phase is the liquid. So the axial pressure gradient is of the order of 

magnitude of the hydrostatic pressure gradient for a liquid column: 

𝜕𝑃

𝜕𝑧
 ~ − 𝜌𝑙𝑔  

Because the liquid density is much larger than the gas density, the relative velocity is seen to 

be positive, with value 

 𝑈𝑅 = √
4𝑑𝑏

3𝜌𝑙𝐶𝐷
(−

𝜕𝑃

𝜕𝑧
− 𝜌𝑔𝑔)                                                                       (10) 

Radial direction 

The projection of equation (3) onto the radial direction writes: 

0 = −𝛼𝑔
𝜕𝑃

𝜕𝑟
− 𝛼𝑔𝐶𝐿𝜌𝑙𝑈𝑅

𝜕𝑉𝑙

𝜕𝑟
− 2𝛼𝑔𝜌𝑙

|𝑈𝑅|2

𝑑𝑏
𝐹𝑊 −

3

4
𝜌𝑙

𝐶𝐷

𝑑𝑏
|𝑈𝑅|𝐷eff 

𝜕𝛼𝑔

𝜕𝑟
                    (11) 

where we have set: 

𝐹𝑊 = Max [0, 𝐶𝑊1 + 𝐶𝑊2
𝑑𝑏

2(𝑅−𝑟)
]                                                     (12) 

Rearranging terms in (11), and simplifying by the void fraction, it follows: 

1

𝛼𝑔

𝜕𝛼𝑔

𝜕𝑟
= −

4

3

𝑑𝑏

𝐶𝐷𝜌𝑙|𝑈𝑅|𝐷eff 

𝜕𝑃

𝜕𝑟
−

4

3

𝐶𝐿𝑑𝑏

𝐶𝐷𝐷eff 

𝜕𝑉𝑙

𝜕𝑟
−

8

3

|𝑈𝑅|

𝐶𝐷𝐷eff 
𝐹𝑊             (13) 

From (10), 𝑈𝑅 is a constant, and (13) can then be integrated analytically. 

We begin by rewriting (13) in non-dimensional form. As in (8), 𝑦 = 𝑅 − 𝑟 denotes the 

distance to the wall. Let 

𝑦∗ ≡
2𝑦

𝑑𝑏
                          (14) 

be the non-dimensional distance to the wall,  



𝑉𝑙
∗ ≡

𝑉𝑙

|𝑈𝑅|
        (15) 

be the non-dimensional liquid velocity, and  

𝐷eff
∗ ≡

3

4

𝐶𝐷𝐷eff

|𝑈𝑅|𝑑𝑏
               (16) 

be the non-dimensional bubble dispersion coefficient. 

(13) can be rewritten: 

1

𝛼𝑔

𝜕𝛼𝑔

𝜕𝑦∗
= −

1

𝜌𝑙|𝑈𝑅|2𝐷eff 
∗

𝜕𝑃

𝜕𝑦∗
−

𝐶𝐿

𝐷eff 
∗

𝜕𝑉𝑙
∗

𝜕𝑦∗
+

𝐹𝑊

𝐷eff 
∗                           (17) 

and 𝐹𝑊 = Max [0, 𝐶𝑊1 +
𝐶𝑊2

𝑦∗ ]. 

On the domain  0 < 𝑦∗ < −
𝐶𝑊2

𝐶𝑊1
, equation (17) writes: 

1

𝛼𝑔

𝜕𝛼𝑔

𝜕𝑦∗ = −
1

𝜌𝑙|𝑈𝑅|2𝐷eff 
∗

𝜕𝑃

𝜕𝑦∗ −
𝐶𝐿

𝐷eff 
∗

𝜕𝑉𝑙
∗

𝜕𝑦∗ +
1

𝐷eff 
∗ (𝐶𝑊1 +

𝐶𝑊2

𝑦∗ )      (18) 

and integrates into 

𝛼𝑔 = 𝐵(𝑦∗)
𝐶𝑊2

𝐷eff 
∗⁄

exp (
𝐶𝑊1

𝐷eff 
∗ 𝑦∗) exp (−

𝐶𝐿

𝐷eff 
∗ 𝑉𝑙

∗) exp (−
𝑃−𝑃|𝑦=0

𝜌𝑙|𝑈𝑅|2𝐷eff 
∗)   (19) 

where B is a constant. In the last factor, 𝑃|𝑦=0 is the pressure at the wall. Because the flow is 

developed, the pressure difference 𝑃 − 𝑃|𝑦=0 is independent on the axial coordinate z. So the 

use of the pressure difference in the last factor of (19), instead of pressure 𝑃, ensures that B is 

independent on z as well. 

Similarly, for 𝑦∗ > −
𝐶𝑊2

𝐶𝑊1
 , we have 

𝛼𝑔 = 𝐵′ exp (−
𝐶𝐿

𝐷eff 
∗ 𝑉𝑙

∗) exp (−
𝑃−𝑃|𝑦=0

𝜌𝑙|𝑈𝑅|2𝐷eff 
∗)                           (20) 

where B’ is another constant. 

Expressions (19) and (20) have to connect continuously at 𝑦∗ = −
𝐶𝑊2

𝐶𝑊1
 . So let Y* be defined 

by: 

𝑌∗ ≡ min (−
𝐶𝑊2

𝐶𝑊1
 ; 𝑦∗)                                       (21) 

The following expression is now valid for all y*: 

𝛼𝑔 = 𝐵(𝑌∗)
𝐶𝑊2

𝐷eff 
∗⁄

exp (
𝐶𝑊1

𝐷eff 
∗ 𝑌∗) exp (−

𝐶𝐿

𝐷eff 
∗ 𝑉𝑙

∗) exp (−
𝑃−𝑃|𝑦=0

𝜌𝑙|𝑈𝑅|2𝐷eff 
∗)   (22) 



with B a constant, which can be determined, knowing for instance the void fraction at the 

center of the pipe. 

 

3.2. Discussion  

Equation (22) shows that the void fraction profile results from an equilibrium between lift, 

wall and dispersion forces. 

The effect of the lift force, expressed in the factor exp (−
𝐶𝐿

𝐷eff 
∗ 𝑉𝑙

∗), is seen to depend on the 

sign of the liquid velocity and the lift coefficient. Assume the latter is positive. For upward 

flows, 𝑉𝑙
∗ is maximum at the center of the pipe, and minimum at the wall. So the bubbles are 

pushed towards the wall. On the opposite, in downward flows, 𝑉𝑙
∗ is negative, and the bubbles 

accumulate in the central region of the pipe, where the liquid velocity is minimum.  

 

Due to the wall force, the void fraction is zero at the wall. Coming back to equation (18), we 

can thus see that, when y* tends to zero, the dominant terms in the radial momentum equation 

are dispersion and wall forces, which counterbalance each other. This can be seen from 

equation (13), after simplification by the void fraction: because the diffusion coefficient Deff  

does not vanish at the wall, the wall force term 𝐹𝑊, which goes to infinity when y* tends to 

zero, can be “absorbed” by the term proportional to 
𝐷eff 

𝛼𝑔

𝜕𝛼𝑔

𝜕𝑟
.  Note that this counterbalancing 

between dispersion and wall force can still take place if coefficient Deff   vanishes at the wall, 

for instance if Deff  decreases slower than 𝛼𝑔(eg as 𝛼𝑔
𝑠 with parameter s<1). This issue does 

not seem to have been widely explored yet. Many models of dispersion force from the 

literature are derived in regions far away from the walls, where some gradients (of velocity or 

velocity covariance) can be neglected. We believe the derivation of dispersion models specific 

to near-wall regions would be an important topic of investigation. 

 

In the next section, the discussion is illustrated by calculations performed with the 

NEPTUNE_CFD code. 

 

 

4. Numerical calculations 

The problem being axisymmetric, the computational domain is limited to a sector of cylinder 

with an opening angle of 10°. The radius R of the pipe is set to 19 mm. The meshes used are 

uniform in the radial direction, with 1 cell both in the axial and orthoradial directions. 

Symmetry boundary conditions are imposed on the azimuthal planes. 



In order to compute a developed solution, periodic boundary conditions are imposed on the 

top and bottom sections of the pipe. The pressure gradient is imposed as a volumetric source 

term. In order to compute a steady solution, calculations are run with the transient solver of 

NEPTUNE_CFD until the void fraction profile is seen to be steady. In most cases, the void 

fraction profiles reach a steady state after 15 s, and the calculations are stopped at 20 s.  

The liquid (resp. gas) density is set to 1000 kg/m
3
 (resp. 1 kg/m

3
). The liquid (resp. gas) 

dynamic viscosity is set to 10
-3

 kg.m
-1

.s
-1

 (resp. 10
-5

 kg.m
-1

.s
-1

). The bubble diameter is 2.5 

mm. Turbulence in the liquid phase is accounted for with a k-ε model. The drag, lift and non-

dimensional dispersion coefficients are taken as CD = CL = Deff* = 0.1.  

In all cases below, the theoretical profile given by relation (22) is computed with the 

numerical velocity and pressure fields calculated by the solver. As explained in the end of 

Section 3.1, the factor B in (22) is determined by the numerical value of the void fraction at 

radial position r = 0.  

 

 

 

 

 

 

3.1. Upward bubbly flow 

In this calculation, the imposed pressure gradient 𝜕𝑃
𝜕𝑧⁄   is set to -9712 Pa.m

-1
, slightly below 

the hydrostatic pressure gradient. At initial time, t = 0, the void fraction is uniform with value 

0.02. Two meshes were used, respectively with 50 and 100 cells in the radial direction.  

The radial void fraction profile is displayed in figure 2 for both meshes. 

 



Fig 2 – void fraction profile for an upward flow. The red (resp. blue) line corresponds to the 

calculation with 50 cells (resp. 100). 

The void fraction profile obtained with 100 cells can therefore be considered as converged. In 

figure 3, we compare the profile obtained in the 100-cell calculation to the analytical one 

given by application of equation (22). 

 

 

Fig 3 – Void fraction profile for the upward bubbly flow. The dashed line stands for the 

numerical solution computed with 100 cells, while the solid line results from formula (22). 

 

The analytical and numerical curves are seen to be close to each other. As discussed  in 

Section 3.2, in this upward bubbly flow configuration, bubbles accumulate in the near-wall 

region: the void fraction profile is seen to be almost uniform in the center of the pipe, to reach 

a maximum at a distance of the order of one bubble radius from the wall, and then to decrease 

at the wall.  

3.2. Downward bubbly flow 

The pressure gradient 𝜕𝑃
𝜕𝑧⁄   is now set to -9515 Pa.m

-1
, slightly above the hydrostatic 

pressure gradient. At initial time, t = 0, the void fraction field is uniform with value 0.02. In 

figure 4, we display the analytical void fraction profile and the numerical profile obtained in 

the 100-cell calculation. 



 

Fig 4 – Void fraction profile for the downward bubbly flow. The dashed line stands for the 

numerical solution computed with 100 cells, while the solid line results from formula (22). 

 

Both curves are in good agreement with each other. Unlike the upward bubbly flow case, the 

void fraction is maximum at the center of the pipe and decreases with the radial position. This 

decrease is slow in the bulk of the flow. At a distance of approximately one bubble radius, the 

void fraction decreases more rapidly, to tend to zero at the wall.   

 

 

4. Conclusion 

In this work, we perform an analytical study of the problem of a statistically steady 

axisymmetric fully developed adiabatic bubbly flow in a vertical pipe. The analysis is 

conducted with the two-fluid formalism.  

The interfacial momentum transfer  𝑀⃗⃗⃗𝑔 is modeled as the sum of four contributions: drag, 

dispersion, lift, and wall forces, with constant coefficients. 

We use the gas momentum balance equation to derive an analytical expression for the void 

fraction as a function of the liquid velocity and pressure profiles. Since the liquid momentum 

balance equation is not used, our analytical relation is valid independently of the model 

chosen for liquid turbulence. In view of this generality, it can serve as a verification case for 

multiphase flow codes. 

We show that the void fraction profile results from an equilibrium between lift, wall and 

dispersion forces. 



The effect of the lift force is seen to depend on the sign of the liquid velocity. If the lift 

coefficient is positive, upward flows push the bubbles towards the wall, whilst downward 

flows cause them to accumulate in the central region of the pipe, where the liquid velocity is 

(negative and) minimum. This behavior is illustrated by calculations with the 

NEPTUNE_CFD code. 

Near the wall, the dominant effects are dispersion and wall forces, which counterbalance each 

other, and the void fraction tends to zero. 

It must be noted, however, that many models of dispersion force from the literature are 

derived in regions far away from the walls, where gradients (of velocity or velocity 

covariance) can be neglected. We believe the derivation of dispersion models specific to near-

wall regions would be an important topic of investigation. 
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Notations 

B         constant in equation (22), determined from the knowledge of the average void fraction 

over a cross-section 

CD       drag coefficient 

CL       lift coefficient 

CW1 , CW2    wall coefficients    

db        bubble diameter (m) 

Deff      effective dispersion coefficient (m
2
/s) 

Deff 
*
    non-dimensional effective dispersion coefficient 

g         gravity (m
2
/s) 

Mg      interfacial momentum exchange term (Pa/m) 

r         radial coordinate (m) 

R        radius of the pipe (m) 



UR     relative velocity (m/s) 

Vk      velocity of phase k (m/s) 

y       distance to the wall (m) 

y*       non-dimensional distance to the wall 

Y*      non-dimensional quantity defined by (21) 

z       axial coordinate (m) 

 

Greek letters 

αk         volume fraction of phase k 

μk         viscosity of phase k 

ρk         density of phase k 

 

Subscripts 

k           k-th phase 

g           gas phase 

l            liquid phase 

 

Mathematical operators 

sgn(x)   sign of x : equals 1 for x > 0 and -1 for x < 0. 
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