T. Prusek, E. Moleiro, F. Oukacine, A. Adobes, M. Jaeger et al., Deposit models for tube support plate flow blockage in Steam Generators, Nucl. Eng. Des, vol.262, pp.418-428, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00997704

S. Delaunay, Réactivité de la magnétite dans les conditions représentatives du circuit secondaire des réacteurs à eau sous pression, 2010.

H. E. Rummens, J. T. Rogers, and C. W. Turner, The Thermal Hydraulics of Tube Support Fouling in Nuclear Steam Generators, Nucl. Technol, vol.148, pp.268-286, 2004.

P. Schindler, E. Tevissen, V. Pointeau, and A. Ungar, COLENTEC: A new approach to investigate tube support plate clogging of Steam Generators, Nuclear Plant Chemistry Conference, 2012.

G. Corredera, M. Alves-vieira, and O. D. Bouvier, Fouling and TSP blockage of steam generators on EDF fleet: identified correlations with secondary water chemistry and planned remedies, International Conference on Water Chemistry of Nuclear Reactor Systems, 2008.

H. Bodineau and T. Sollier, Tube support plate clogging up of French PWR steam generators, Eurosafe Forum, p.44067716, 2008.

R. Varin, Characterization on PWR steam generator deposits, 1996.

H. Demasles, P. Mercier, and P. Tochon, Guide de l'encrassement des échangeurs de chaleur, Editions Greth, issue.2-9502555-5-8, 2007.

P. Balakrishnan, P. Mcsweeney, C. Forst, and P. Walmsley, A Chemical Cleaning Process for Nuclear Steam-Generators, Nucl. Technol, vol.55, pp.349-361, 1981.

S. Tsubakizaki, H. Ando, Y. Takei, T. Naganuma, Y. Sakamoto et al., Improved Reliability of High-AVT (High-pH Water Treatment) Application to Combined Cycle Plants, Mitsubishi Heavy Ind, Tech. Rev, vol.52, issue.2, 2015.

H. Takamatsu, T. Matsunaga, R. M. Wilson, and T. Kusakabe, Sludge collector performance in steam generators of pressurized water reactor, Nucl. Eng. Des, vol.200, pp.323-327, 2000.

F. Carrette, Décontamination et Nettoyage chimique en centrales à réacteur à eau sous pression, corrosion dans les centrales Forum, 2015.

F. V. Puzzuoli, P. J. Leinonen, G. A. Lowe, and B. Murchie, Steam generator cleaning campaigns at Bruce A: 1993-1996, Proc. Fourth International Conference CANDU Maintenance, pp.355-85, 1997.

A. L. Rufus, V. S. Sathyaseelan, M. P. Srinivasan, P. S. Kumar, S. N. Veena et al., Chemistry aspects pertaining to the application of steam generator chemical cleaning formulation based on ethylene diamine tetra acetic acid, Prog. Nucl. Energy, vol.39, pp.285-303, 2001.

T. Prusek, Modélisation et simulation numérique du colmatage à l'échelle du sous-canal dans les générateurs de vapeur, 2012.

S. Pujet, Encrassement secondaire des GV: Analyse du REX et des essais en laboratoire sur le labotoire et le dépôt de produits de corrosion, 2002.

, Investigation of Steam Generator Corrosion Products Under Typical PWR Operating Conditions, 1984.

S. Girard, State of the Art of Clogging Diagnosis, Phys. Stat. Models Steam Gener. Clogging Diagn, pp.15-24, 2014.

, , 2015.

S. Paillard, A. Skarlatos, G. Pichenot, G. Cattiaux, and T. Sollier, Simulation of eddy current testing of steam generator tubes in the proximity of support plates quadrefoil-shaped holes with an hybrid finite FE-VIM model, ICNDE, 2010.

O. Moreau, K. Beddek, S. Clenet, and Y. L. Menach, Stochastic Nondestructive Testing Simulation: Sensitivity Analysis Applied to Material Properties in Clogging of Nuclear Powerplant Steam Generators, IEEE Trans. Magn, vol.49, pp.1873-1876, 2013.

A. Skarlatos, C. Gilles-pascaud, G. Pichenot, G. Cattiaux, and T. Sollier, A hybrid volume integral-finite elements approach for the simulation of eddy current inspection of steam generator tubes in the region of quadrifoiled support plate, Am. Inst. Phys, 2010.

N. Ida, H. Hoshikawa, and W. Lord, Finite element prediction of differential eddy current probe signals from Fe3O4 deposits in PWR steam generators, NDT Int, vol.18, pp.90163-90167, 1985.

S. Girard, T. Romary, J. Favennec, P. Stabat, and H. Wackernagel, Sensitivity analysis and dimension reduction of a steam generator model for clogging diagnosis, Reliab. Eng. Syst. Saf, vol.113, pp.143-153, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00818385

S. Girard, Diagnostic du colmatage des générateurs de vapeur à l'aide de modèles physiques et statistiques, 2012.

M. Guillodo, P. Combrade, and M. Foucault, A parametric study of hematite reduction in steam generator secondary side chemistry conditions, Water Chemistry in Nuclear Reactor Systems, pp.11-14, 2004.

C. W. Turner, Physical and chemical factors affecting sludge consilidation, 1997.

, Effect of Hydrazine on Flow Accelerated Corrosion, EPRI Report, 2005.

K. Fujiwara, M. Domae, K. Yoneda, and F. Inada, Model of physico-chemical effect on flow accelerated corrosion in power plant, Corros. Sci, vol.53, pp.3526-3533, 2011.

D. Feron, Différents types de corrosion dans les réacteurs à eau sous pression, corrosion dans les centrales Forum, 2015.

D. Leduc-brunet, Chimie du milieu secoandaire, corrosion dans les centrales Forum, 2015.

J. Chivot, Cr-H2O et Ni-H2O en focntion de la température, Collection Sciences et Techniques, ISBN 2-9510108-6-9, 2004.

M. Pourbaix, Atlas d'équilibres électrochimiques à 25°C, 1963.

C. Mansour, Spéciation des espèces souffrées dans les générateurs de vapeur des centrales nucléaires à réacteur à eau sous pression, 2009.

B. Chexal, J. Horowitz, J. Jones, R. Dooley, B. Millet et al., Flow Accelerated Corrosion in Power Plants, 1998.

K. Ishigure, Handbook of water chemistry of nuclear reactor system, Atomic Energy Society of Japon, 2000.

M. Izumiya, F. Mizuniwa, K. Osumi, G. Kanbayashi, Y. Matsushima et al., Oxygen injection for corrosion supression of BWR feed water system, Karyoku Genshiryoku Hatsuden, vol.27, pp.292-295, 1976.

K. Fujiwara, M. Domae, T. Ohira, K. Hisamune, H. Takiguch et al., Electrochamical measurements of carbon steel under high flow rate condition and thermodynamic solubility of iron, 16 th Pacific Basin Nuclear Conference, 2008.

K. Dinov, K. Ishigure, C. Matsuura, and D. Hiroishi, Solubility of Magnetite in High-Temperature Water and an Approach to Generalized Solubility Computations, J. Nucl. Mater, vol.207, issue.93, pp.90268-90272, 1993.

T. Tsuruta, K. Murata, Y. Shoda, and K. Yamamoto, Contribution of materials investigations to improve the safety and performance of LWRs, vol.6, pp.181-190, 2006.

O. D. Bouvier, Corrosion-érosion des aciers dans le circuit secondaire, corrosion dans les centrales Forum, 2015.

O. D. Bouvier, Dégradation par corrosion dans les générateurs de vapeur, corrosion dans les centrales Forum, 2015.

J. Bischoff, A. T. Motta, C. Eichfeld, R. J. Comstock, G. Cao et al., corrosion of ferriticmartensitic steels in steam and supercritical water, J Nucl Mater, 2012.

L. Tan, M. T. Machut, K. Sridharan, and T. R. Allen, corrosion behavior of a ferritic/martensitic steel HCM12A exposed to harsh environments, J Nucl Mater, pp.161-170, 2007.

L. Tan, Y. Yang, and T. R. Allen, Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A, Corros. Sci, vol.48, pp.4234-4242, 2006.

Z. Liu, X. Gao, L. Du, J. Li, Y. Kuang et al., Corrosion behavior of low-alloy steel with martensite/ferrite microstructure at vapor-saturated CO2 and CO2-saturated brine conditions, Appl. Surf. Sci, vol.351, pp.610-623, 2015.

Y. Chen, K. Sridharan, T. R. Allen, and S. Ukai, Microstructural examination of oxide layers formed on an oxide dispersion strengthened ferritic steel exposed to supercritical water, J. Nucl. Mater, vol.359, pp.50-58, 2006.

P. K. Sinha, M. K. Kumar, and V. Kain, Effect of microstructure of carbon steel on magnetite formation in simulated Hot Conditioning environment of nuclear reactors, J. Nucl. Mater, vol.464, pp.20-27, 2015.

S. Coste-leconte, Quel(s) matériau(x) pour quel composant? Rappels de métallurgie, corrosion dans les centrales Forum, 2015.

T. R. Bott, Aspects of crystallization fouling, Exp. Therm. Fluid Sci, vol.14, pp.356-360, 1997.

C. Lei, Z. Peng, T. Day, X. Yan, X. Bai et al., Experimental observation of surface morphology effect on crystallization fouling in plate heat exchangers, Int. Commun. Heat Mass Transf, vol.38, pp.25-30, 2011.

B. Bansal, X. D. Chen, and H. Mueller-steinhagen, Analysis of "classical" deposition rate law for crystallisation fouling, Chem. Eng. Process, vol.47, pp.1201-1210, 2008.

M. G. Mwaba, M. R. Golriz, and J. Gu, A semi-empirical correlation for crystallization fouling on heat exchange surfaces, Appl. Therm. Eng, vol.26, pp.440-447, 2006.

G. J. Bignold, K. Garbett, R. Garnsey, and I. S. Woolsey, Water chemistry of Nuclear Reactor System 2, pp.5-18, 1981.

V. H. Heitmann, W. Katsner, and . Vgb-kraftwerkstechnik-ger, , pp.211-219, 1974.

O. Suat and N. Francis, Chimie du circuit secondaire des PWR et VVER, 2016.

V. H. Heitmann and P. Schub, Water chemistry of Nuclear Reactor System 3, British Nuclear Energy Society, pp.243-252, 1994.

G. Rocchini, Magnetite stability in aqueous solutions as a function of temperature, Corros. Sci, pp.2043-2061, 1994.

V. H. Keller and . Vgb-kraftwerkstechnik-ger, , pp.292-295, 1974.

J. Mathews, The impact of pH on Corrosion of the Cycle, 2010.

R. J. Vaessen, C. Himawan, and G. J. Witkamp, Scale formation of ice from electrolyte solutions on a scraped surface heat exchanger plate, J. Cryst. Growth, vol.3, pp.2172-2177, 2002.

R. J. Gainey and C. A. Thorp, CaSO4 SEEDING PREVENTS CaSO4 SCALE, Ind. Eng. Chem, vol.55, pp.39-43, 1963.

R. Rautenbach and R. Habbe, Seeding Technique for Zero Discharge Processes, Adaption to Electrodialysis, Desalination, vol.84, pp.153-161, 1991.

M. C. Barnes, J. Addai-mensah, and A. R. Gerson, The kinetics of desilication of synthetic spent Bayer liquor seeded with cancrinite and cancrinite/sodalite mixed-phase crystals, J. Cryst. Growth, vol.200, pp.251-264, 1999.

D. Hasson and J. Zahavi, Mechanism of Calcium Sulfate Scale Deposition on Heat Transfer Surfaces, Ind. Eng. Chem. Fundam, vol.9, pp.1-10, 1970.

G. G. Duffy, S. N. Kazi, and X. D. Chen, Heat transfer and pressure drop characteristics of suspensions of synthetic and wood pulp fibres in annular flow, Appl. Therm. Eng, vol.31, pp.2971-2980, 2011.

, Detachment of Spherical Microparticles Adhering on Flat Surfaces by Hydrodynamic Forces, 2016.

M. El-adawy, T. Paillat, G. Touchard, and J. M. Cabaleiro, Numerical Simulation of the Electrical Double Layer Development: Physicochemical Model at the Solid and Dielectric Liquid Interface for Laminar Flow Electrification Phenomenon, IEEE Trans. Dielectr. Electr. Insul, vol.18, pp.1463-1475, 2011.

M. Barale, C. Mansour, F. Carrette, E. M. Pavageau, H. Catalette et al., Characterization of the surface charge of oxide particles of PWR primary water circuits from 5 to 320 degrees C, J. Nucl. Mater, vol.381, pp.302-308, 2008.

F. Scenini, G. Palumbo, N. Stevens, A. Cook, and A. Banks, Investigation of the role of electrokinetic effects in corrosion deposit formation, Corros. Sci, vol.87, pp.71-79, 2014.

B. J. Reitzer, Mathematical Analysis of Factors Influencing Rate of Decline of Over-all Heat Transfer Coefficients, Ind. Eng. Chem. Process Des. Dev, vol.3, pp.345-348, 1964.

B. R. Smith and F. Sweett, The crystallization of calcium sulfate dihydrate, J. Colloid Interface Sci, vol.37, pp.612-618, 1971.

P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 1977.

J. N. Israelachvili, Intermolecular and Surface Forces, 1985.

P. C. Hiemenz, Principles of Colloid and Interface Science, 1986.

P. H. Tewari and A. W. Mclean, Temperature dependance of point of zero charge of alumina and magnetite, J Colloid Interface Sci, p.167, 1972.

M. Erdemoglu and M. Sarikaya, Effects of heavy metals and oxalate on the zeta potential of magnetite, J Colloid Interface Sci, pp.795-804, 2006.

M. A. Schoonen, Calculation of the point of zero charge of metal oxides between 1 and 350°C, Geochim. Cosmochim. Acta, pp.2845-2851, 1994.

C. W. Turner, D. A. Guzonas, and S. J. Klimas, Surface chemistry interventions to control boiler tube fouling, 2000.

D. Lu, B. Yuan, L. Wu, Z. Ma, and Y. Chen, Research on the deposition model of particle-like corrosion product in, Ann. Nucl. Energy, vol.81, pp.98-105, 2015.

S. Delaunay, Effet des impuretés sur la charge de surface de la magnétite, 2015.

K. A. Burrill, The deposition of magnetic particles from high velocity water onto isothermal tubes, Depos. Magn. Part. High Veloc. Water Isothermal Tubes, vol.27, p.pp, 1977.

C. W. Turner, S. J. Klimas, and M. G. Brideau, The effect of alternative amines on the rate of boiler tube fouling, AECL Report, 1997.

C. W. Turner and M. Godin, Mechanisms of magnetite deposition in pressurized boiling and non-boiling water, AECL Report, 1994.

A. Stutzmann, S. Leclercq, and C. Mansour, Chimie des milieux primaire et secondaire des centrales nucléaires REP français, 2015.

M. Basset, J. Mcinerney, N. Arbeau, and D. H. Lister, The fouling of alloy-800 heat exchange surfaces by magnetite particles, Can. J. Chem. Eng, vol.78, pp.40-52, 2000.

S. K. Beal and J. H. Chen, A model of sludge behavior in nuclear plant steam generators, 1986.

K. A. Burrill, C. W. Turner, and P. V. Balakrishnan, Tubesheet fouling in nuclear steam generators, Proc. Int. Conf. Chem. Water React. Oper. Exp. New Dev, vol.2, pp.509-522, 1994.

D. H. Charlesworth, The deposition of corrosion products in boiling water systems, Chem Eng Prog Symp Ser, pp.21-30, 1970.

D. Thomas and U. Grigull, Experimental investigation of the deposition of suspended magnetite from the fluid flow in steam generating boiler tubes, vol.26, pp.109-115, 1974.

N. N. Mankina, Investigation of conditions of formation of iron oxide deposits, Teploenergetika, vol.7, issue.3, pp.8-12, 1960.

W. E. Parkins, Surface film formation in reactor systems, AECL Report, 1961.

R. A. Stinchcombe, Solids deposition in boiling water systems, AERE, 1966.

V. Zarembo, V. Kritskii, A. Slobodov, and L. Puchkov, Solubility of Magnetite in the Coolant of an Atomic Power-Station Equipped with a Boiling-Water Reactor, Sov. At. Energy, vol.65, pp.587-593, 1988.

C. W. Turner, Y. Liner, and M. B. Carver, Modelling magnetite particle deposition in nuclear steam generators and comparisons with plant data, AECL Report, 1994.

K. A. Burrill, E. L. Cheluget, and M. Chocron, Precipitation fouling of heat transfer surfaces in CANDU nuclear power stations, Water Chem, Nucl. React. Syst. 7 Proc. Conf, vol.2, pp.615-639, 1996.

S. K. Friedlander and H. F. Johnstone, Deposition of suspended particles from turbulent gas streams, Ind Eng Chem, p.1151, 1951.

N. Weisbrod, O. Dahan, and E. M. Adar, Particle transport in unsaturated fractured chalk under arid conditions, J. Contam. Hydrol, vol.56, pp.199-200, 2002.

H. Hirano, M. Domae, K. Miyajima, and K. Yoned, Study on the mechanism of flow-hole blockage of steam generator tube support plates under PWR secondary conditions, Nuclear Plant Chemistry Conference, 2010.

D. Brogioli and A. Vailati, Diffusive mass transfer by non equilibrium fluctuations: Fick's law revisited, Phys. Rev. E, vol.63, 2000.

H. E. Rummens, The Thermalhydraulics of Tube-Support Fouling in Nuclear Steam Generators, 1999.

S. Pujet and M. Dijoux, Modeling of the combined effects of particle deposition and soluble iron precipitation on PWR steam generator fouling, Water Chemistry in Nuclear Reactor Systems, pp.11-14, 2004.

J. Morrison, J. Hewett, C. Cooper, C. Ponton, and B. Connolly, Effects of Water Chemistry on Corrosion of Stainless Steel and Diposition of Corrosion Products in Hign Temperature Pressurised Water, Nuclear Plant Chemistry Conference, 2012.

T. R. Bock, D. W. Mahaffey, and J. H. Olsea, Corrosion of servo valves by an electrokinetic streaming current, pp.1-82, 1969.