D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community, Appl. Spectrosc, vol.64, pp.335-366, 2010.

D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc, vol.66, pp.347-419, 2012.

P. Fichet, P. Mauchien, and C. Moulin, Determination of impurities in Uranium and Plutonium dioxides by laser-induced breakdown spectroscopy, Appl. Spectrosc, vol.53, pp.1111-1117, 1999.

G. Gallou, J. B. Sirven, C. Dutouquet, O. L. Bihan, and E. Frejafon, Aerosols analysis by LIBS for monitoring of air pollution by industrial sources, Aerosol Sci. Technol, vol.45, issue.8, pp.918-926, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963285

D. Syvilay, A. Texier, and A. Arles, Trace element quantification of lead based roof sheets of historical monuments by laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc, pp.34-42, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01672110

J. J. Camacho, L. Diaz, S. Martinez-ramirez, and J. O. Caceres, Time-and spaceresolved spectroscopic characterization of laser-induced swine muscle tissue plasma, Spectrochim. Acta B At. Spectrosc, vol.111, pp.92-101, 2015.

R. J. Lasheras, C. Bello-galvez, and J. Anzano, Identification of polymers by LIBS using methods of correlation and normalized coordinates, Polym. Test, vol.29, issue.8, pp.1057-1064, 2010.

T. L. Zhang, L. Liang, and K. Wang, A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR), J. Anal. At. Spectrom, vol.29, issue.12, pp.2323-2329, 2014.

T. Zhang, S. Wu, H. S. Tang, K. Wang, Y. X. Duan et al., Progress of chemometrics in laser-induced breakdown spectroscopy analysis. Chin, J. Anal. Chem, vol.43, issue.6, pp.939-948, 2015.

X. H. Zou, L. B. Guo, and M. Shen, Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform, Opt. Express, vol.22, issue.9, pp.10233-10238, 2014.

T. Yuan, Z. Wang, Z. Li, W. Ni, and J. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta, vol.807, pp.29-35, 2014.

B. Zhang, L. Sun, H. Yu, Y. Xin, and Z. Cong, Wavelet denoising method for laserinduced breakdown spectroscopy, J. Anal. At. Spectrom, vol.28, issue.12, p.1884, 2013.

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform, Anal. Chim. Acta, vol.754, pp.8-19, 2012.

D. Body and B. L. Chadwick, Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system, Spectrochim. Acta B, vol.56, pp.725-736, 2001.

C. Bohling, K. Hohmann, and D. Scheel, Acta B, vol.62, pp.1519-1527, 2007.

J. B. Sirven, B. Salle, P. Mauchien, J. L. Lacour, S. Maurice et al., Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods, J. Anal. At. Spectrom, vol.22, pp.1471-1480, 2007.

O. Forni, S. Maurice, and O. Gasnault, Independent component analysis classification of laser induced breakdown spectroscopy spectra, Spectrochim. Acta B At. Spectrosc, vol.86, pp.31-41, 2013.

J. L. Gottfried, D. Lucia, F. C. Munson, C. A. Miziolek, and A. W. , Strategies for residue explosives detection using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom, vol.23, pp.205-216, 2008.

J. L. Gottfried, Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates, Anal. Bioanal. Chem, vol.400, pp.3289-3301, 2011.

J. B. Sirven, A. Pailloux, M. 'baye, Y. Coulon, N. Alpettaz et al., Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics, J. Anal. At. Spectrom, vol.24, pp.451-459, 2009.

P. Pease and V. Tchakerian, Source provenance of carbonate grains in the Wahiba Sand Sea, Oman, using a new LIBS method, Aeolian Res, vol.15, pp.203-216, 2014.

S. Moncayo, S. Manzoor, F. Navarro-villoslada, and J. O. Caceres, Evaluation of supervised chemometric methods for sample classification by laser induced breakdown spectroscopy, Chemom. Intell. Lab. Syst, vol.146, pp.354-364, 2015.

F. Aquino and E. Pereira-filho, Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: chemometric applications for better data interpretation, Talanta, vol.134, pp.65-73, 2015.

T. F. Boucher, M. V. Ozanne, and M. L. Carmosino, A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc, vol.107, pp.1-10, 2015.

E. Haddad, J. Villot-kadri, M. Ismael, and A. , Artificial neural network for onsite quantitative analysis of soils using laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc, pp.51-57, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00788952

K. Li, L. Guo, and C. Li, Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network, J. Anal. At. Spectrom, vol.30, issue.7, pp.1623-1628, 2015.

J. L. Tarazona, J. Guerrero, R. Cabanzo, and E. Mejia-ospino, Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS, Appl. Opt, vol.51, pp.108-114, 2012.

D. , A. E. Pagnotta, S. Grifoni, and E. , A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra, Appl. Phys. B Lasers Opt, vol.118, issue.3, pp.353-360, 2015.

F. O. Borges, G. H. Cavalcanti, G. C. Gomes, V. Palleschi, and A. Mello, A fast method for the calculation of electron number density and temperature in laserinduced breakdown spectroscopy plasmas using artificial neural networks, Appl. Phys. B Lasers Opt, vol.117, issue.1, pp.437-444, 2014.

C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter et al., Fiber-optic laser sensor for mine detection and verification, Appl. Opt, vol.45, pp.3817-3825, 2006.

G. Y. Smolentsev and A. V. Soldatov, Analysis of time-resolved XANES spectra for determining the organometallic compound structure in solution, Journal of Surface Investigation. X-ray, Synchrotr. Neutr. Tech, vol.3, issue.3, pp.398-401, 2009.

Y. Zhou, B. Li, and P. Zhang, Fourier transform infrared (FT-IR) imaging coupled with principal component analysis (PCA) for the study of photooxidation of polypropylene, Appl. Spectrosc, vol.66, issue.5, pp.566-573, 2012.

A. Kassouf, M. El-rakwe, H. Chebib, V. Ducruet, D. N. Rutledge et al., Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil, Anal. Chim. Acta, vol.839, pp.14-25, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01186901

A. Smolders, D. Martino, F. Staeren, and N. , Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis, Magn. Reson. Imaging, vol.25, issue.6, pp.860-868, 2007.

J. Martin, P. Spietz, J. Orphal, and J. P. Burrows, Principal and independent components analysis of overlapping spectra in the context of multichannel timeresolved absorption spectroscopy, Spectrochim. Acta A, vol.60, pp.2673-2693, 2004.

M. Garrido, F. X. Rius, and M. S. Larrechi, Multivariate curve resolution-alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes, Anal. Bioanal. Chem, vol.390, pp.2059-2066, 2008.

I. Batonneau-gener, A. Moissette, C. Bremard, and G. Buntinx, Time resolved resonance Raman, transient diffuse reflectance and kinetic studies of species generated by UV aser photolysis of biphenyl occluded within dehydrated Yfaujasite zeolites, J. Photochem. Photobiol. A Chem, vol.195, issue.2-3, pp.156-166, 2008.

W. H. Cassinelli, L. Martins, and A. R. Passos, Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray absorption spectroscopy monitoring of the activation of copper alumina catalyst, Catal. Today, vol.229, pp.114-122, 2014.

B. Debus, M. Sliwa, H. Miyasaka, J. Abe, and C. Ruckebusch, Multivariate curve resolution-alternating least squares to cope with deviations from data bilinearity in ultrafast time-resolved spectroscopy, Chemom. Intell. Lab. Syst, vol.128, pp.101-110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861325

A. Mezzetti, L. Blanchet, A. De-juan, W. Leibl, and C. Ruckebusch, Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution, Anal. Bioanal. Chem, vol.399, issue.6, pp.1999-2014, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00564187

C. Ruckebusch, M. Sliwa, P. Pernot, A. De-juan, and R. Tauler, Comprehensive data analysis of femtosecond transient absorption spectra: a review, J Photochem Photobiol C: Photochem Rev, vol.13, issue.1, pp.1-27, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683565

R. Saad, L. 'hermite, D. Bousquet, and B. , Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment, Spectrochim. Acta B At. Spectrosc, vol.101, pp.330-334, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01094338

D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-induced breakdown spectroscopy, elemental analysis, Encycl. Analyt. Chem, issue.26, p.1, 2012.

G. Wang, Q. Ding, and Z. Hou, Independent component analysis and its applications in signal processing for analytical chemistry, TrAC Trends Anal. Chem, vol.27, issue.4, pp.368-376, 2008.

A. Hyva¨rinen and E. Oja, Independent component analysis: algorithms and applications, Neural Netw, vol.13, pp.411-430, 2000.

D. N. Rutledge, J. Bouveresse, and D. , Independent components analysis with the JADE algorithm, Trends Anal. Chem, vol.50, pp.22-32, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01349802

D. N. Rutledge, J. Bouveresse, and D. , Corrigendum to 'Independent Components Analysis with the JADE algorithm, Trends Anal. Chem, vol.67, p.220, 2015.

A. Kassouf, J. Maalouly, D. N. Rutledge, H. Chebib, and V. Ducruet, Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA), Waste Manag, vol.34, issue.11, pp.2131-2138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173836

V. Krishnaveni, S. Jayaraman, M. Kumar, P. M. Shivakumar, K. Ramadoss et al., Comparison of independent component analysis algorithms for removal of ocular artifacts from electroencephalogram, Meas. Sci. Rev, vol.5, issue.2, pp.67-78, 2005.

P. Hojen-sorensen, O. Winther, and L. K. Hansen, Mean field approaches to independent component analysis, Neural Comput, vol.14, pp.889-918, 2002.

D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Lett. Nature, vol.401, pp.788-791, 1999.

H. Parastar, M. Jalali-heravi, and R. Tauler, Is independent component analysis appropriate for multivariate resolution in analytical chemistry?, Trends Anal. Chem, vol.31, pp.134-143, 2012.

D. Jouan-rimbaud-bouveresse, A. Moya-gonzalez, F. Ammari, and D. N. Rutledge, Two novel methods for the determination of the number of components in independent components analysis models, Chemom. Intell. Lab. Syst, vol.112, pp.24-32, 2012.

R. Tauler, Multivariate curve resolution applied to second order data, Chemom. Intell. Lab. Syst, vol.30, pp.133-146, 1995.

A. Hoecker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A, vol.372, pp.469-481, 1996.
URL : https://hal.archives-ouvertes.fr/in2p3-00022656

M. Maeder and A. Zilian, Evolving factor analysis, a new multivariate technique in chromatography, Chemom. Intell. Lab. Syst, vol.3, pp.205-213, 1988.

J. Jaumot, D. Juan, A. Tauler, and R. , Software description: MCR-ALS GUI 2.0: new features and applications, Chemom. Intell. Lab. Syst, vol.140, pp.1-12, 2015.

. Ica-toolbox-homepage,

, Multivariate curve resolution homepage

A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Comput, vol.7, pp.1129-1159, 1995.

F. R. Bach and M. I. Jordan, Kernel independent component analysis, J. Mach. Learn. Res, vol.3, pp.1-48, 2002.

M. Baudelet, M. Boueri, and J. Yu, Timeresolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis, Spectrochim. Acta B At. Spectrosc, vol.62, issue.12, pp.1329-1334, 2007.

T. Piehler, N. P. Thuvan, F. C. Delucia, and . Jr, Temporal evolution of the laser induced breakdown spectroscopy spectrum of aluminum metal in different bath gases, Appl. Opt, vol.44, pp.3654-3660, 2005.

L. Diaz, J. J. Camacho, M. Sanz, M. Hernandez, V. Jandova et al., Temporal evolution study of the plasma induced by CO2 pulsed laser on targets of titanium oxides, Spectrochim. Acta B At. Spectrosc, vol.86, pp.88-93, 2013.

M. S. Dawood and J. Margot, Effect of ambient gas pressure and nature on the temporal evolution of aluminum laser induced plasmas, AIP Adv, vol.4, p.37111, 2014.

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals, Appl. Spectrosc, vol.55, pp.1312-1319, 2001.

J. A. Aguilera and C. Aragon, Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: temporal evolution of plasma parameters and self-absorption, Spectrochim. Acta B At. Spectrosc, vol.63, issue.7, pp.784-792, 2008.

H. Hegazy, E. A. Abdel-wahab, A. , F. M. Allam, S. H. Nossair et al., Laser-induced breakdown spectroscopy: technique, new features, and detection limits of trace elements in Al base alloy, Appl. Phys. B Lasers Opt, vol.115, pp.173-183, 2014.