S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Transactions on Electron Devices, vol.26, pp.1880-1886, 1979.

D. B. Tuckerman and R. Pease, High-performance heat sinking for vlsi, IEEE Electron device letters, vol.2, pp.126-129, 1981.

M. J. Madou, Fundamentals of microfabrication : the science of miniaturization, 2002.

P. Abgrall and A. Gue, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem -a review, Journal of Micromechanics and Microengineering, vol.17, p.15, 2007.

Y. Xia and G. M. Whitesides, Soft Lithography, Angewandte Chemie International Edition, vol.37, pp.550-575, 1998.

J. Kim, J. Baek, K. Lee, and S. Lee, Automatic aligning and bonding system of pdms layer for the fabrication of 3d microfluidic channels, Sensors and Actuators A: Physical, vol.119, pp.593-598, 2005.

C. M. Ho, S. H. Ng, K. H. Li, and Y. Yoon, 3d printed microfluidics for biological applications, Lab Chip, vol.15, pp.3627-3637, 2015.

A. K. Au, W. Huynh, L. F. Horowitz, and . Folch, A. 3d-printed microfluidics, Angewandte Chemie International Edition, vol.55, pp.3862-3881, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02316717

N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, The upcoming 3d-printing revolution in microfluidics, Lab on a Chip, vol.16, pp.1720-1742, 2016.

L. Hunt, The long history of lost wax casting, Gold bulletin, vol.13, pp.63-79, 1980.

B. A. Peeni, M. L. Lee, A. R. Hawkins, and A. T. Woolley, Sacrificial layer microfluidic device fabrication methods, Electrophoresis, vol.27, pp.4888-4895, 2006.

S. Metz, S. Jiguet, A. Bertsch, and P. Andrenaud, Polyimide and su-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique, Lab on a Chip, vol.4, pp.114-120, 2004.

J. S. Miller, Rapid casting of patterned vascular networks for perfusable engineered 3d tissues, Nature materials, vol.11, p.768, 2012.

D. Therriault, S. R. White, and J. A. Lewis, Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly, Nature materials, vol.2, p.265, 2003.

M. K. Gelber and R. Bhargava, Monolithic multilayer microfluidics via sacrificial molding of 3d-printed isomalt, Lab on a Chip, vol.15, pp.1736-1741, 2015.

Z. Li, J. Yang, K. Li, L. Zhu, and W. Tang, Fabrication of pdms microfluidic devices with 3d wax jetting, RSC Adv, vol.7, pp.3313-3320, 2017.

A. P. Esser-kahn, Three-dimensional microvascular fiber-reinforced composites, Advanced Materials, vol.23, pp.3654-3658, 2011.

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications, Scientific reports, vol.6, p.35111, 2016.

Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song, Inkjet print microchannels based on a liquid template, Lab Chip, vol.15, pp.1759-1764, 2015.

G. Cummins and M. P. Desmulliez, Inkjet printing of conductive materials: a review, Circuit World, vol.38, pp.193-213, 2012.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet printing-process and its applications, Advanced materials, vol.22, pp.673-685, 2010.

E. Tekin, P. J. Smith, and U. S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter, vol.4, pp.703-713, 2008.

T. Boland, B. Xu, T. Damon, and X. Cui, Application of inkjet printing to tissue engineering, Biotechnology journal, vol.1, pp.910-917, 2006.

J. R. Anderson, Fabrication of topologically complex three-dimensional microfluidic systems in pdms by rapid prototyping, Analytical chemistry, vol.72, pp.3158-3164, 2000.

M. Zhang, J. Wu, L. Wang, K. Xiao, and W. Wen, A simple method for fabricating multi-layer pdms structures for 3d microfluidic chips, Lab on a Chip, vol.10, pp.1199-1203, 2010.

B. Jo, L. M. Van-lerberghe, K. M. Motsegood, and D. J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (pdms) elastomer, Journal of microelectromechanical systems, vol.9, pp.76-81, 2000.

R. Courson, Low-cost multilevel microchannel lab on chip: Df-1000 series dry film photoresist as a promising enabler, RSC Advances, vol.4, pp.54847-54853, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082670

P. Abgrall, A novel fabrication method of flexible and monolithic 3d microfluidic structures using lamination of su-8 films, Journal of Micromechanics and Microengineering, vol.16, p.113, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01882165

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, Fabrication of complex three-dimensional microchannel systems in pdms, Journal of the American Chemical Society, vol.125, pp.554-559, 2003.

H. N. Chan, Direct, one-step molding of 3d-printed structures for convenient fabrication of truly 3d pdms microfluidic chips, Microfluidics and nanofluidics, vol.19, pp.9-18, 2015.

D. C. Webster, Combinatorial and high-throughput methods in macromolecular materials research and development, Macromolecular Chemistry and Physics, vol.209, pp.237-246, 2008.

P. S. Dittrich and A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature Reviews Drug Discovery, vol.5, pp.210-218, 2006.

K. Lee, Microfluidic network-based combinatorial dilution device for high throughput screening and optimization, Microfluidics and Nanofluidics, vol.8, pp.677-685, 2010.

R. F. Ismagilov, J. M. Ng, P. J. Kenis, and G. M. Whitesides, Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools, Analytical Chemistry, vol.73, pp.5207-5213, 2001.

C. Wohlfarth, Viscosity of pure organic liquids and binary liquid mixtures, vol.25, 2009.

R. Brossard, Spontaneous curvature of polydimethylsiloxane thin films: Mechanisms and applications: A new route for the low cost fabrication of new functionalities for microfluidics, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01735251