, Handbook of nanostructured materials and nanotechnology, 1999.

D. Ferry and M. G. Stephen, Transport in nanostructures, vol.6, 1999.

M. Fernandez-garcia, A. Martinez-arias, J. C. Hanson, and J. A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties, Chem. Rev, vol.104, pp.4063-4104, 2004.

, Introduction to nanoscale science and technology

M. Ventra, S. Evoy, and . Heflin, , 2006.

, Nanostructured catalysts

S. L. Scott, C. M. Crudden, and C. W. Jones, , 2008.

N. Aquino, The hydrogen and helium atoms confined in spherical boxes, Adv. Quantum Chem, vol.57, pp.123-171, 2009.

, Multifunctional polymer nanocomposites

, One-dimensional nanostructures: principle and applications

T. Zhai and J. Yao, , 2012.

Q. Fu, F. Yang, and X. Bao, Interface-confined oxide nanostructures for catalytic oxidation reactions, Acc. Chem. Res, vol.8, pp.1692-1701, 2013.

S. Suresh, Semiconductor nanomaterials, methods and applications: a review Nanosci, Nanotechnol, vol.3, pp.62-74, 2013.

A. N. Singh, R. D. Thakre, J. C. More, P. K. Sharma, and Y. K. Agrawal, Block copolymer nanostructures and their applications: A review Polymer-Plastics Technol, Engin, vol.10, pp.1077-1095, 2015.

S. A. Miners, G. A. Rance, and A. N. Khlobystov, Chemical reactions confined within carbon nanotubes, Chem. Soc. Rev, vol.45, pp.4727-4746, 2016.

D. Martino, M. T. Abdelmohsen, L. K. Rutjes, F. P. Van-hest, and J. C. , Nanoreactors for green catalysis Beil, J. Organic Chem, vol.29, pp.716-733, 2018.

R. M. Mazo, Partition Function of an Atom in a Spherical Box, Am. J. Phys, vol.28, pp.332-335, 1960.

D. Suryanarayana and J. A. Weil, On the hyperfine splitting of the hydrogen atom in a spherical box, J. Chem. Phys, vol.64, pp.510-513, 1976.

E. V. Ludena, SCF calculations for hydrogen in a spherical box, J. Chem. Phys, vol.66, pp.468-470, 1977.

E. Ley-koo and S. Rubinstein, The hydrogen atom with spherical boxes with penetrable walls, J. Chem. Phys, vol.71, pp.351-357, 1979.

I. D. Reid, T. Azuma, and E. Roduner, Surface-adsorbed free radicals observed by positive-muon avoided-level crossing resonance, Nature, vol.345, pp.328-330, 1990.

K. Ghandi and Y. Miyake, Charged Particle and Photon Interactions with Matter, Advances

K. Ghandi and A. Maclean, Muons as hyperfine interaction probes in chemistry, Hyperfine Interactions, vol.230, pp.17-34, 2015.

K. Ghandi, J. Brodovitch, B. Addison-jones, and P. W. Percival, Hyperfine coupling constant of muonium in sub-and supercritical water, Physica B, vol.289, pp.476-481, 2000.

K. Ghandi, J. Brodovitch, B. Mccollum, and P. W. Percival, Enolization of Acetone in Superheated Water Detected via Radical Formation, J. Am. Chem. Soc, vol.125, pp.9594-9596, 2003.

K. Ghandi, D. J. Arseneau, M. D. Bridges, and D. Fleming, Muonium formation as a probe of radiation chemistry in supercritical CO 2, J. Phys. Chem. A, vol.52, pp.11613-11625, 2004.

K. Ghandi, F. Zahariev, and Y. Wang, Alkyl radicals in zeolites, J. Phys. Chem. A, vol.109, pp.7242-7251, 2005.

M. D. Bridges, D. J. Arseneau, D. G. Fleming, and K. Ghandi, Hyperfine interactions and molecular motion of the Mu-ethyl radical in faujasites: NaY, HY and USY, J. Phys. Chem. C, vol.111, pp.9779-9793, 2007.

M. Lauzon, Generation and detection of the cyclohexadienyl radical in phosphonium ionic liquids, Phys. Chem. Chem. Phys, vol.39, pp.5957-5962, 2008.

W. A. Pryor, J. P. Stanley, and M. G. Griffith, The Hydrogen Atom and Its Reactions in Solution, Science, vol.169, pp.181-183, 1970.

R. F. Kiefl, Quantum Diffusion of Muonium in KCl, Phys. Rev. Lett, vol.62, pp.792-795, 1989.

Z. Li, G. Zhu, G. Lu, S. Qiu, and X. Yao, Ammonia Borane Confined by a Metal-Organic Framework for Chemical Hydrogen Storage: Enhancing Kinetics and Eliminating Ammonia, J. Am. Chem. Soc, vol.132, pp.1490-1491, 2010.

P. Cormier, R. Clarke, R. Mcfadden, and K. Ghandi, Selective Free Radical Reactions using Supercritical Carbon Dioxide, J. Am. Chem. Soc, vol.136, pp.2200-2203, 2014.

O. Bünermann, Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption, Science, vol.350, pp.1346-1349, 2015.

J. Stajic, Hydrogen atom makes graphen magnetic, Science, vol.352, pp.424-424, 2016.

P. Porion, L. J. Michot, A. M. Fauguère, and A. Delville, Structural and Dynamical Properties of the Water Molecules Confined in Dense Clay Sediments: a Study Combining 2 H NMR Spectroscopy and Multiscale Numerical Modeling, J. Phys. Chem. C, vol.111, pp.5441-5453, 2007.

C. H. Zhou and J. Keeling, Fundamental and applied research on clay minerals: From climate and environment to nanotechnology App, Clay Sci, vol.74, pp.3-9, 2013.

M. Chang and R. Juang, Use of chitosan-clay composite as immobilization support for improved activity and stability of ?-glucosidase, Biochem. Eng. J, vol.35, pp.93-98, 2007.

M. Lainé, Reaction mechanisms in talc under ionizing radiation: evidence of a high stability of H ? atoms, J. Phys. Chem. C, vol.120, pp.2087-2095, 2016.

K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst, vol.44, pp.1272-1276, 2011.

T. J. Pinnavaia, Intercalated Clay Catalysts, Science, vol.220, pp.365-371, 1983.

H. H. Murray, Overview -clay mineral applications, Appl. Clay. Sci, vol.5, pp.379-395, 1991.

H. Du and J. D. Miller, A molecular dynamics simulation study of water structure and adsorption states at talc surfaces, Int. J. Min. Process, vol.84, pp.172-184, 2007.

G. Mälhammar, Determination of some surface properties of talc, Colloids Surf, vol.44, pp.61-69, 1990.

S. Ramos-bernal and A. Negron-mendoza, Radiation heterogeneous processes of 14 C-acetic acid adsorbed in Na-Montmorillonite, J. Radioanal. Nucl. Chem, vol.160, pp.487-492, 1992.

J. Bujdak and B. M. Rode, The effect of clay structure on peptide bond formation catalysis, J. Mol. Cat. A: Chem, vol.144, pp.129-136, 1999.

A. Yaouanc and P. Dalmas-de-réotier, Muon spin rotation, relaxation and resonance. Applications to condensed matter, 2011.

C. N. Sherren, Merging the chemistry of electron-rich olefins with imidazolium ionic liquids: radicals and hydrogen-atom adducts, Chem. Sci, vol.331, pp.448-450, 2011.

S. F. Cox, Muonium as a model for interstitial hydrogen in the semiconducting and semimetallic elements, Rep. Prog. Phys, vol.72, p.116501, 2009.

J. S. Möller, Playing quantum hide-and-seek with the muon: localizing muon stopping sites, Physica Scripta, vol.88, p.68510, 2013.

A. B. Alencar, A. P. Barboza, B. S. Archanjo, H. Chacham, and B. R. Neves, Experimental and theoretical investigations of monolayer and few-layer talc, 2D Mater, vol.2, p.15004, 2015.

E. Holzschuh, Direct measurement of muonium hyperfine frequencies in Si and Ge, Phys. Rev. B, vol.27, pp.102-111, 1983.

N. Sahoo, Electronic structure and hyperfine interaction of muonium in semi-conductors, Hyperfine Interactions, vol.18, pp.525-541, 1984.

R. F. Kiefl, Evidence for endohedral muonium in KxC60 and consequences for electronic structure, Phys. Rev. Lett, vol.69, 1992.

B. Webster, K. L. Mccormack, and R. M. Macrae, Paramagnetic muonium states in elemental sulfur, J. Chem. Soc., Faraday Trans. 93, pp.3423-3427, 1997.

P. W. Percival, B. Addison-jones, J. Brodovitch, and S. Sun-mack, Radio-frequency muon spin resonance studies of endohedral and exohedral muonium adducts of fullerenes, Appl. Magn. Reson, vol.11, pp.315-323, 1996.

P. Cormier, C. Alcorn, G. Legate, and K. Ghandi, Muon Radiolysis Affected by Density Inhomogeneity in Near-Critical Fluids Rad, Res, vol.181, pp.396-406, 2014.

K. Ghandi, Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles, Nanoscale, vol.7, pp.11545-11551, 2015.

J. Mills, Generation of Thermal Muonium in Vacuum, Phys. Rev. Lett, vol.56, pp.1463-1466, 1986.

D. G. Fleming, Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2, Science, vol.331, pp.448-450, 2011.

W. A. Macfarlane, Low temperature quantum diffusion of muonium in KCl, Hyperfine Interactions, vol.85, pp.23-29, 1994.

P. J. King and I. Yonenaga, Low temperature muonium behaviour in Cz-Si and Cz-Si 0.91 Ge 0.09 . Physica B 308-310, pp.546-549, 2001.

V. G. Storchak, D. G. Eshchenko, and J. H. Brewer, Quantum diffusion of muonium atoms in solids: Localization vs. band-like propagation. Physica B 374-375, pp.347-350, 2006.

K. Shimomura, R. Kadono, A. Koda, K. Nishiyama, and M. Mihara, Electronic structure of Mu complex donor state in rutile TiO 2, Phys. Rev. B, vol.92, issue.075203, pp.1-6, 2015.

A. T. Flory, D. E. Murnick, M. Leventhal, and W. J. Kossler, Probing the Superconducting Vortex Structure by Polarized-µ + Spin Precession, Phys. Rev. Lett, vol.33, pp.969-972, 1974.

K. Ghandi, M. D. Bridges, D. J. Arseneau, and D. G. Fleming, Muonium formation as a probe of radiation chemistry in sub-and supercritical carbon dioxide, J. Phys. Chem. A, vol.108, pp.11613-11625, 2004.

V. G. Storchak and N. V. Prokof-'-ev, Quantum diffusion of muons and muonium atoms in solids, Rev. Mod. Phys, vol.70, pp.929-978, 1998.

Y. M. Belousov, Depolarization rate calculation of the muon spin polarization in diamagnetic diatomic media. Physica B 289-290, pp.431-434, 2000.

E. L. Silva, Hydrogen impurity in yttria: Ab initio and ?SR perspectives, Phys. Rev. B, vol.85, p.14, 2012.

R. B. Vieira, Muon-Spin-Rotation study of yttria-stabilized zirconia (ZrO 2 :Y): Evidence for muon and electron separate traps, J. Phys. Conf. Ser, vol.551, p.6, 2014.

,

T. Shichi and K. Takagi, Clay minerals as photochemical reaction fields, J. Photochem. Photobiol. C: Photochem. Rev, vol.1, pp.113-130, 2000.

D. H. Solomon, Clay minerals as electron acceptors and/or electron donors in organic reactions, Clays Clay Miner, vol.16, pp.31-39, 1968.

P. Laszlo, Chemical reactions on clays, Science, vol.235, pp.1473-1477, 1987.

W. Miller, R. Alexander, N. Chapman, J. Mckinley, and . Smellie, Geological disposal of radioactive wastes and natural analogues, vol.2, 2000.

M. Lainé, Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay mineral, RSC Adv, vol.7, pp.526-534, 2017.

A. H. Morrison, G. Liu, and K. Ghandi, Presenting Muon Thermalization with Feynman QED, JPS Conf. Proc, vol.21, p.9, 2018.

R. M. Musat, A. R. Cook, J. Renault, and R. A. Crowell, Nanosecond Pulse Radiolysis of Nanoconfined Water, J. Phys. Chem. C, vol.116, pp.13104-13110, 2012.

X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory, Phys. Rev. A, vol.43, pp.1186-1196, 1991.

S. H. Guo, X. L. Yang, F. T. Chan, K. W. Wong, and W. Y. Ching, Analytic solution of a two-dimensional hydrogen atom. II. Relativistic theory, Phys. Rev. A, vol.43, pp.1197-1205, 1991.

N. Aquino, G. Campoy, and A. Flores-riveros, Accurate energy eigenvalues and eigenfunctions for the two-dimensional confined hydrogen atom, Int. J. Quantum Chem, vol.103, pp.267-277, 2005.

A. Soylu, O. Bayrak, and I. Boztosun, The energy eigenvalues of the two dimensional hydrogen atom in a magnetic field, Int. J. Mod. Phys. E, vol.15, pp.1263-1271, 2006.

N. Funamori, Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle, Sci. Rep, vol.5, p.8437, 2015.

A. R. Porter, M. D. Towler, and R. J. Needs, Muonium as a hydrogen analogue in silicon and germanium; quantum effects and hyperfine parameters, Phys. Rev. B, vol.60, pp.13534-13546, 1999.

P. W. Percival, E. Roduner, and H. Fischer, Radiolysis effects in muonium chemistry, Chem. Phys, vol.32, pp.353-367, 1978.

R. West and P. W. Percival, Organosilicon compounds meet subatomic physics: Muon spin resonance, Dalton Trans, vol.39, pp.9209-9216, 2010.

D. L. Hamilton and C. M. Henderson, The preparation of silicate compositions by a gelling method, Mineral. Mag, vol.36, pp.832-838, 1968.

T. Yamazaki, Evolution of Meson Science in Japan, Science, vol.233, pp.334-338, 1986.

P. B. Giannozzi, Quantum Espresso: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, vol.21, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz et al., An Augmented Plane Wave Plus Local Orbitals Program for Calculating, 2001.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

M. S. Karmous, H. Ben-rhaiem, J. Robert, B. Lanson, and A. Ben-haj-amara, Charge location effect on the hydration properties of synthetic saponite and hectorite saturated by Na + , Ca 2+ cations: XRD investigation, Appl. Clay. Sci, vol.46, pp.43-50, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00570497