H. Mccann, C. H. Stevens, H. Cartwright, and G. M. Halliday, Alphasynucleinopathy phenotypes, Parkinsonism Relat. Disord, vol.20, pp.62-67, 2014.

G. Fusco, Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers, Science, vol.358, pp.1440-1443, 2017.

J. M. Froula, Defining alpha-synuclein species responsible for Parkinson disease phenotypes in mice, J. Biol. Chem, 2019.

P. Thakur, Modeling Parkinson's disease pathology by combination of fibril seeds and alpha-synuclein overexpression in the rat brain, Proc. Natl Acad. Sci. USA, vol.114, pp.8284-8293, 2017.

K. C. Luk, Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells, Proc. Natl Acad. Sci. USA, vol.106, 2009.

L. A. Volpicelli-daley, Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death, Neuron, vol.72, pp.57-71, 2011.

K. C. Luk, Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice, J. Exp. Med, vol.209, pp.975-986, 2012.

T. Bartels, J. G. Choi, and D. J. Selkoe, Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, vol.477, pp.107-110, 2011.

J. Burre, M. Sharma, and T. C. Sudhof, Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation, Proc. Natl Acad. Sci. USA, vol.111, pp.4274-4283, 2014.

J. Burre, Properties of native brain alpha-synuclein, Nature, vol.498, pp.6-7, 2013.

B. Winner, In vivo demonstration that alpha-synuclein oligomers are toxic, Proc. Natl Acad. Sci. USA, vol.108, pp.4194-4199, 2011.

N. Cremades, Direct observation of the interconversion of normal and toxic forms of alpha-synuclein, Cell, vol.149, pp.1048-1059, 2012.

G. Forloni, V. Artuso, P. La-vitola, and C. Balducci, Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases, Mov. Disord, vol.31, pp.771-781, 2016.

F. X. Theillet, Structural disorder of monomeric alpha-synuclein persists in mammalian cells, Nature, vol.530, pp.45-50, 2016.

L. Wang, alpha-synuclein multimers cluster synaptic vesicles and attenuate recycling, Curr. Biol, vol.24, pp.2319-2326, 2014.

C. Galvagnion, The role of lipids interacting with alpha-synuclein in the pathogenesis of Parkinson's disease, J. Parkinsons Dis, vol.7, pp.433-450, 2017.

M. Suzuki, K. Sango, K. Wada, and Y. Nagai, Pathological role of lipid interaction with alpha-synuclein in Parkinson's disease, Neurochem. Int, vol.119, pp.97-106, 2018.

D. Snead and D. Eliezer, Alpha-synuclein function and dysfunction on cellular membranes, Exp. Neurobiol, vol.23, pp.292-313, 2014.

N. P. Alza, P. A. Gonzalez, M. A. Conde, R. M. Uranga, and G. A. Salvador, Lipids at the crossroad of alpha-synuclein function and dysfunction: biological and pathological implications, Front. Cell. Neurosci, vol.13, p.175, 2019.

E. I. O'leary and J. C. Lee, Interplay between alpha-synuclein amyloid formation and membrane structure, Biochimica et biophysica acta. Biochim. Biphys. Acta Proteins Proteom, vol.1867, pp.483-491, 2019.

I. Alecu and S. A. Bennett, Dysregulated lipid metabolism and its role in alphasynucleinopathy in Parkinson's disease, Front. Neurosci, vol.13, p.328, 2019.

N. Bengoa-vergniory, R. F. Roberts, R. Wade-martins, and J. Alegre-abarrategui, Alpha-synuclein oligomers: a new hope, Acta Neuropathol, vol.134, pp.819-838, 2017.

H. A. Lashuel, C. R. Overk, A. Oueslati, and E. Masliah, The many faces of alphasynuclein: from structure and toxicity to therapeutic target, Nat. Rev. Neurosci, vol.14, pp.38-48, 2013.

J. S. O'brien and E. L. Sampson, Lipid composition of the normal human brain: gray matter, white matter, and myelin, J. Lipid Res, vol.6, pp.537-544, 1965.

E. Muro, G. E. Atilla-gokcumen, and U. S. Eggert, Lipids in cell biology: how can we understand them better?, Mol. Biol. Cell, vol.25, pp.1819-1823, 2014.

R. M. Adibhatla and J. F. Hatcher, Role of lipids in brain injury and diseases, Future Lipidol, vol.2, pp.403-422, 2007.

B. Brugger, Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry, Annu. Rev. Biochem, vol.83, pp.79-98, 2014.

T. A. Lydic and Y. H. Goo, Lipidomics unveils the complexity of the lipidome in metabolic diseases, Clin. Transl. Med, 2018.

K. Yang and X. Han, Lipidomics: techniques, applications, and outcomes related to biomedical sciences, Trends Biochem. Sci, vol.41, pp.954-969, 2016.

A. E. Saliba, I. Vonkova, and A. C. Gavin, The systematic analysis of protein-lipid interactions comes of age, Nat. Rev. Mol. Cell Biol, vol.16, pp.753-761, 2015.

M. G. Spillantini, Alpha-synuclein in Lewy bodies, Nature, vol.388, pp.839-840, 1997.

P. H. Jensen, M. S. Nielsen, R. Jakes, C. G. Dotti, and M. Goedert, Binding of alphasynuclein to brain vesicles is abolished by familial Parkinson's disease mutation, J. Biol. Chem, vol.273, pp.26292-26294, 1998.

W. A. Jager, Sphingomyelin in Lewy inclusion bodies in Parkinson's disease, Arch. Neurol, vol.21, pp.615-619, 1969.

J. Burre, M. Sharma, and T. C. Sudhof, Definition of a molecular pathway mediating alpha-synuclein neurotoxicity, J. Neurosci, vol.35, pp.5221-5232, 2015.

M. L. Kramer and W. J. Schulz-schaeffer, Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies, J. Neurosci, vol.27, pp.1405-1410, 2007.

G. M. Halliday, Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease, Brain, vol.128, pp.2654-2664, 2005.

C. Galvagnion, Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation, Nat. Chem. Biol, vol.11, pp.229-234, 2015.

M. Zhu, J. Li, and A. L. Fink, The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation, J. Biol. Chem, vol.278, pp.40186-40197, 2003.

H. J. Lee, C. Choi, and S. J. Lee, Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form, J. Biol. Chem, vol.277, pp.671-678, 2002.

M. Grey, Acceleration of alpha-synuclein aggregation by exosomes, J. Biol. Chem, vol.290, pp.2969-2982, 2015.

E. Jo, N. Fuller, R. P. Rand, . St, P. George-hyslop et al., Defective membrane interactions of familial Parkinson's disease mutant A30P alphasynuclein, J. Mol. Biol, vol.315, pp.799-807, 2002.

M. B. Fares, The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of alpha-synuclein, and enhances its secretion and nuclear localization in cells, Hum. Mol. Genet, vol.23, pp.4491-4509, 2014.

D. Ghosh, The newly discovered Parkinson's disease associated Finnish mutation (A53E) attenuates alpha-synuclein aggregation and membrane binding, Biochem, vol.53, pp.6419-6421, 2014.

M. Robotta, J. Cattani, J. C. Martins, V. Subramaniam, and M. Drescher, Alphasynuclein disease mutations are structurally defective and locally affect membrane binding, J. Am. Chem. Soc, vol.139, pp.4254-4257, 2017.

E. Kara, alpha-Synuclein mutations cluster around a putative protein loop, Neurosci. Lett, vol.546, pp.67-70, 2013.

P. Flagmeier, Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of alpha-synuclein aggregation, Proc. Natl Acad. Sci. USA, vol.113, pp.10328-10333, 2016.

N. B. Cole, Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein, J. Biol. Chem, vol.277, pp.6344-6352, 2002.

S. Nuber, Abrogating native alpha-synuclein tetramers in mice causes a L-DOPA-responsive motor syndrome closely resembling Parkinson's disease, Neuron, vol.100, p.75, 2018.

S. Fanning, Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment, Mol. Cell, vol.73, p.1008, 2019.

J. Burre, The synaptic function of alpha-synuclein, J. Parkinsons Dis, vol.5, pp.699-713, 2015.

D. Scott and S. Roy, alpha-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis, J. Neurosci, vol.32, pp.10129-10135, 2012.

K. E. Larsen, Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis, J. Neurosci, vol.26, pp.11915-11922, 2006.

V. M. Nemani, Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis, Neuron, vol.65, pp.66-79, 2010.

D. J. Busch, Acute increase of alpha-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation, Mol. Biol. Cell, vol.25, pp.3926-3941, 2014.

J. Lautenschlager, C. F. Kaminski, and G. S. Kaminski-schierle, alpha-synucleinregulator of exocytosis, endocytosis, or both?, Trends Cell Biol, vol.27, pp.468-479, 2017.

D. D. Murphy, S. M. Rueter, J. Q. Trojanowski, and V. M. Lee, Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons, J. Neurosci, vol.20, pp.3214-3220, 2000.

D. E. Cabin, Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein, J. Neurosci, vol.22, pp.8797-8807, 2002.

G. Fusco, Structural basis of synaptic vesicle assembly promoted by alphasynuclein, Nat. Commun, vol.7, p.12563, 2016.

E. R. Georgieva, T. F. Ramlall, P. P. Borbat, J. H. Freed, and D. Eliezer, Membranebound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles, J. Am. Chem. Soc, vol.130, pp.12856-12857, 2008.

R. A. Nass and S. , Parkinson's Disease: Molecular and Therapeutic Insights from Model Systems, 2008.

E. R. Georgieva, T. F. Ramlall, P. P. Borbat, J. H. Freed, and D. Eliezer, The lipidbinding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms, J. Biol. Chem, vol.285, pp.28261-28274, 2010.

R. Sharon, alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins, Proc. Natl Acad. Sci. USA, vol.98, pp.9110-9115, 2001.

B. Mesmin, A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP, Cell, vol.155, pp.830-843, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02109031

S. Lev, Non-vesicular lipid transport by lipid-transfer proteins and beyond, Nat. Rev. Mol. Cell Biol, vol.11, pp.739-750, 2010.

M. M. Ouberai, alpha-Synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling, J. Biol. Chem, vol.288, pp.20883-20895, 2013.

M. Garten, Methyl-branched lipids promote the membrane adsorption of alpha-synuclein by enhancing shallow lipid-packing defects, Phys. Chem. Chem. Phys, vol.17, pp.15589-15597, 2015.

B. Nuscher, Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study, J. Biol. Chem, vol.279, pp.21966-21975, 2004.

F. Kamp and K. Beyer, Binding of alpha-synuclein affects the lipid packing in bilayers of small vesicles, J. Biol. Chem, vol.281, pp.9251-9259, 2006.

E. R. Middleton and E. Rhoades, Effects of curvature and composition on alphasynuclein binding to lipid vesicles, Biophys. J, vol.99, pp.2279-2288, 2010.

I. M. Pranke, alpha-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding, J. Cell Biol, vol.194, pp.89-103, 2011.

L. Kjaer, L. Giehm, T. Heimburg, and D. Otzen, The influence of vesicle size and composition on alpha-synuclein structure and stability, Biophys. J, vol.96, pp.2857-2870, 2009.

E. I. O'leary, Z. Jiang, M. P. Strub, and J. C. Lee, Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated alpha-synuclein, J. Biol. Chem, vol.293, pp.11195-11205, 2018.

D. Boassa, Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis, J. Neurosci, vol.33, pp.2605-2615, 2013.

S. Chandra, X. Chen, J. Rizo, R. Jahn, and T. C. Sudhof, A broken alpha -helix in folded alpha-synuclein, J. Biol. Chem, vol.278, pp.15313-15318, 2003.

W. S. Davidson, A. Jonas, D. F. Clayton, and J. M. George, Stabilization of alphasynuclein secondary structure upon binding to synthetic membranes, J. Biol. Chem, vol.273, pp.9443-9449, 1998.

E. Hellstrand, Adsorption of alpha-synuclein to supported lipid bilayers: positioning and role of electrostatics, ACS Chem. Neurosci, vol.4, pp.1339-1351, 2013.

A. C. Ferreon, Y. Gambin, E. A. Lemke, and A. A. Deniz, Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence, Proc. Natl Acad. Sci. USA, vol.106, pp.5645-5650, 2009.

A. J. Trexler and E. Rhoades, Alpha-synuclein binds large unilamellar vesicles as an extended helix, Biochem, vol.48, pp.2304-2306, 2009.

C. C. Jao, B. G. Hegde, J. Chen, I. S. Haworth, and R. Langen, Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement, Proc. Natl Acad. Sci. USA, vol.105, pp.19666-19671, 2008.

R. Bussell and D. Eliezer, A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins, J. Mol. Biol, vol.329, pp.763-778, 2003.

E. Jo, J. Mclaurin, C. M. Yip, . St, P. George-hyslop et al., alpha-Synuclein membrane interactions and lipid specificity, J. Biol. Chem, vol.275, pp.34328-34334, 2000.

G. Fusco, Direct observation of the three regions in alpha-synuclein that determine its membrane-bound behaviour, Nat. Commun, vol.5, p.3827, 2014.

B. I. Giasson, I. V. Murray, J. Q. Trojanowski, and V. M. Lee, A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly, J. Biol. Chem, vol.276, pp.2380-2386, 2001.

T. Logan, J. Bendor, C. Toupin, K. Thorn, and R. H. Edwards, alpha-Synuclein promotes dilation of the exocytotic fusion pore, Nat. Neurosci, vol.20, pp.681-689, 2017.

L. Almandoz-gil, In situ proximity ligation assay reveals co-localization of alpha-synuclein and SNARE proteins in murine primary neurons, Front. Neurol, vol.9, 2018.

X. Lou, J. Kim, B. J. Hawk, and Y. K. Shin, alpha-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking, Biochem. J, vol.474, pp.2039-2049, 2017.

J. Sun, Functional cooperation of alpha-synuclein and VAMP2 in synaptic vesicle recycling, Proc. Natl Acad. Sci. USA, 2019.

M. Atias, Synapsins regulate alpha-synuclein functions, Proc. Natl Acad. Sci. USA, 2019.

J. Burre, Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro, Science, vol.329, pp.1663-1667, 2010.

R. Gaspar, J. Pallbo, U. Weininger, S. Linse, and E. Sparr, Ganglioside lipids accelerate alpha-synuclein amyloid formation, Biochim. Biophys. Acta Proteins Proteom, vol.1867, pp.508-518, 2019.

C. R. Bodner, C. M. Dobson, and A. Bax, Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy, J. Mol. Biol, vol.390, pp.775-790, 2009.

S. Mittal, beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson's disease, Science, vol.357, pp.891-898, 2017.

Y. Chu, H. Dodiya, P. Aebischer, C. W. Olanow, and J. H. Kordower, Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions, Neurobiol. Dis, vol.35, pp.385-398, 2009.

D. Chatterjee, Proteasome-targeted nanobodies alleviate pathology and functional decline in an alpha-synuclein-based Parkinson's disease model, NPJ Parkinsons Dis, vol.4, p.25, 2018.

V. Narayanan and S. Scarlata, Membrane binding and self-association of alphasynucleins, Biochem, vol.40, pp.9927-9934, 2001.

M. Zhu and A. L. Fink, Lipid binding inhibits alpha-synuclein fibril formation, J. Biol. Chem, vol.278, pp.16873-16877, 2003.

E. Jo, Alpha-synuclein-synaptosomal membrane interactions: implications for fibrillogenesis, Eur. J. Biochem, vol.271, pp.3180-3189, 2004.

M. Nakai, Expression of alpha-synuclein, a presynaptic protein implicated in Parkinson's disease, in erythropoietic lineage, Biochem. Biophys. Res. Commun, vol.358, pp.104-110, 2007.

R. Renella, J. S. Schlehe, D. J. Selkoe, D. A. Williams, and M. J. Lavoie, Genetic deletion of the GATA1-regulated protein alpha-synuclein reduces oxidative stress and nitric oxide synthase levels in mature erythrocytes, Am. J. Hematol, vol.89, pp.974-977, 2014.

C. R. Scherzer, GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein, Proc. Natl Acad. Sci. USA 105, pp.10907-10912, 2008.

S. Abd-elhadi, Total and proteinase K-resistant alpha-synuclein levels in erythrocytes, determined by their ability to bind phospholipids, associate with Parkinson's disease, Sci. Rep, vol.5, p.11120, 2015.

K. Araki, The localization of alpha-synuclein in the process of differentiation of human erythroid cells, Int. J. Hematol, vol.108, pp.130-138, 2018.

E. F. Gautier, Comprehensive proteomic analysis of human erythropoiesis, Cell Rep, vol.16, pp.1470-1484, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01356018

T. Imberdis, S. Fanning, A. Newman, N. Ramalingam, and U. Dettmer, Studying alpha-synuclein conformation by intact-cell cross-linking, Methods Mol. Biol, pp.77-91, 1948.

S. Kim, GBA1 deficiency negatively affects physiological alpha-synuclein tetramers and related multimers, Proc. Natl Acad. Sci. USA, vol.115, pp.798-803, 2018.

U. Dettmer, A. J. Newman, V. E. Von-saucken, T. Bartels, and D. Selkoe, KTKEGV repeat motifs are key mediators of normal alpha-synuclein tetramerization: Their mutation causes excess monomers and neurotoxicity, Proc. Natl Acad. Sci. USA, vol.112, pp.9596-9601, 2015.

B. A. Killinger and A. Moszczynska, Characterization of alpha-synuclein multimer stoichiometry in complex biological samples by electrophoresis, Anal. Chem, vol.88, pp.4071-4084, 2016.

L. Pieri, K. Madiona, and R. Melki, Structural and functional properties of prefibrillar alpha-synuclein oligomers, Sci. Rep, vol.6, p.24526, 2016.

E. S. Luth, T. Bartels, U. Dettmer, N. C. Kim, and D. J. Selkoe, Purification of alphasynuclein from human brain reveals an instability of endogenous multimers as the protein approaches purity, Biochem, vol.54, pp.279-292, 2015.

U. Dettmer, Loss of native alpha-synuclein multimerization by strategically mutating its amphipathic helix causes abnormal vesicle interactions in neuronal cells, Hum. Mol. Genet, vol.26, pp.3466-3481, 2017.

E. Rhoades, T. F. Ramlall, W. W. Webb, and D. Eliezer, Quantification of alphasynuclein binding to lipid vesicles using fluorescence correlation spectroscopy, Biophys. J, vol.90, pp.4692-4700, 2006.

A. J. Newman, D. Selkoe, and U. Dettmer, A new method for quantitative immunoblotting of endogenous alpha-synuclein, PLoS ONE, vol.8, p.81314, 2013.

S. Mukherjee, Characterization and identification of dityrosine cross-linked peptides using tandem mass spectrometry, Anal. Chem, vol.89, pp.6136-6145, 2017.

N. Getoff, Pulse radiolysis of aromatic amino acids -state of the art, Amino Acids, vol.2, pp.195-214, 1992.

N. Papagiannakis, Alpha-synuclein dimerization in erythrocytes of patients with genetic and non-genetic forms of Parkinson's disease, Neurosci. Lett, vol.672, pp.145-149, 2018.

M. M. Wordehoff, Opposed effects of dityrosine formation in soluble and aggregated alpha-synuclein on fibril growth, J. Mol. Biol, vol.429, pp.3018-3030, 2017.

L. Stryer and R. P. Haugland, Energy transfer: a spectroscopic ruler, Proc. Natl Acad. Sci. USA, vol.58, pp.719-726, 1967.

L. Tosatto, Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants, Sci. Rep, vol.5, p.16696, 2015.

S. Nath, J. Meuvis, J. Hendrix, S. A. Carl, and Y. Engelborghs, Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change, Biophys. J, vol.98, pp.1302-1311, 2010.

M. Iljina, Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading, Proc. Natl Acad. Sci. USA, vol.113, pp.1206-1215, 2016.

R. Camacho, D. Tauber, and I. G. Scheblykin, Fluorescence anisotropy reloadedemerging polarization microscopy methods for assessing chromophores' organization and excitation energy transfer in single molecules, particles, films, and beyond, Adv. Mater, vol.31, p.1805671, 2019.

T. R. Yamasaki, Parkinson's disease and multiple system atrophy have distinct alpha-synuclein seed characteristics, J. Biol. Chem, vol.294, pp.1045-1058, 2019.

H. Dimant, Direct detection of alpha synuclein oligomers in vivo, Acta Neuropathol. Commun, vol.1, p.6, 2013.

R. F. Roberts, R. Wade-martins, and J. Alegre-abarrategui, Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson's disease brain, Brain, vol.138, pp.1642-1657, 2015.

E. Betzig, Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, pp.1642-1645, 2006.

B. Fauvet, alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer, J. Biol. Chem, vol.287, pp.15345-15364, 2012.

T. R. Alderson and J. L. Markley, Biophysical characterization of alpha-synuclein and its controversial structure, Intrinsically Disord. Proteins, vol.1, pp.18-39, 2013.

D. Eliezer, E. Kutluay, R. Bussell, and G. Browne, Conformational properties of alpha-synuclein in its free and lipid-associated states, J. Mol. Biol, vol.307, pp.1061-1073, 2001.

P. H. Weinreb, W. Zhen, A. W. Poon, K. A. Conway, and P. T. Lansbury, NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded, Biochem, vol.35, pp.13709-13715, 1996.

K. Araki, A small-angle X-ray scattering study of alpha-synuclein from human red blood cells, Sci. Rep, vol.6, p.30473, 2016.

M. M. Dedmon, K. Lindorff-larsen, J. Christodoulou, M. Vendruscolo, and C. M. Dobson, Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations, J. Am. Chem. Soc, vol.127, pp.476-477, 2005.

J. E. Galvin, T. M. Schuck, V. M. Lee, and J. Q. Trojanowski, Differential expression and distribution of alpha-, beta-, and gamma-synuclein in the developing human substantia nigra, Exp. Neurol, vol.168, pp.347-355, 2001.

M. A. Fakhree, I. S. Nolten, C. Blum, and M. Claessens, Different conformational subensembles of the intrinsically disordered protein alpha-synuclein in cells, J. Phys. Chem. Lett, vol.9, pp.1249-1253, 2018.

A. N. Shrivastava, A. Aperia, R. Melki, and A. Triller, Physico-pathologic mechanisms involved in neurodegeneration: misfolded protein-plasma membrane interactions, Neuron, vol.95, pp.33-50, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571234

I. Dikiy, Semisynthetic and in vitro phosphorylation of alpha-synuclein at Y39 promotes functional partly helical membrane-bound states resembling those induced by PD mutations, ACS Chem. Biol, vol.11, pp.2428-2437, 2016.

V. L. Anderson, T. F. Ramlall, C. C. Rospigliosi, W. W. Webb, and D. Eliezer, Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation, Proc. Natl Acad. Sci. USA, vol.107, pp.18850-18855, 2010.

J. R. Patterson, Time course and magnitude of alpha-synuclein inclusion formation and nigrostriatal degeneration in the rat model of synucleinopathy triggered by intrastriatal alpha-synuclein preformed fibrils, Neurobiol. Dis, vol.130, p.104525, 2019.

A. Iyer and M. Claessens, Disruptive membrane interactions of alpha-synuclein aggregates, Biochimica et biophysica acta. Proteins Proteom, vol.1867, pp.468-482, 2019.

K. Wakabayashi, K. Tanji, F. Mori, and H. Takahashi, The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alphasynuclein aggregates, Neuropathol, vol.27, pp.494-506, 2007.

K. Wakabayashi, The Lewy body in Parkinson's disease and related neurodegenerative disorders, Mol. Neurobiol, vol.47, pp.495-508, 2013.

G. E. Dale, Relationships between Lewy bodies and pale bodies in Parkinson's disease, Acta Neuropathol, vol.83, pp.525-529, 1992.

E. Gomez-tortosa, K. Newell, M. C. Irizarry, J. L. Sanders, and B. Hyman, Synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining, vol.99, pp.352-357, 2000.

E. Kuusisto, L. Parkkinen, and I. Alafuzoff, Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62, J. Neuropathol. Exp. Neurol, vol.62, pp.1241-1253, 2003.

T. Kanazawa, Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals, Brain Pathol, vol.22, pp.67-78, 2012.

K. Wakabayashi, Accumulation of alpha-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy, Acta Neuropathol, vol.96, pp.445-452, 1998.

J. H. Soper, Alpha-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae, Mol. Biol. cell, vol.19, pp.1093-1103, 2008.

M. R. Issidorides, M. T. Panayotacopoulou, and G. Tiniacos, Similarities between neuronal Lewy bodies in parkinsonism and hepatic Mallory bodies in alcoholism, Pathol. Res. Pract, vol.186, pp.473-478, 1990.

W. P. Gai, In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies, Exp. Neurol, vol.166, pp.324-333, 2000.

S. H. Shahmoradian, Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes, Nat. Neurosci, vol.22, pp.1099-1109, 2019.

A. M. Thelen and R. Zoncu, Emerging roles for the lysosome in lipid metabolism, Trends Cell Biol, vol.27, pp.833-850, 2017.

B. W. Kunkle, Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing, Nat. Genet, vol.51, pp.414-430, 2019.

D. Chang, A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci, Nat. Genet, vol.49, pp.1511-1516, 2017.

K. K. Johansen, S. H. Torp, M. J. Farrer, E. K. Gustavsson, and J. O. Aasly, A case of Parkinson's disease with no Lewy body pathology due to a homozygous exon deletion in Parkin, Case Rep. Neurol. Med, p.6838965, 2018.

P. Haberkant and J. C. Holthuis, Fat & fabulous: bifunctional lipids in the spotlight, Biochim. Biophys. Acta, vol.1841, pp.1022-1030, 2014.

D. Hoglinger, Trifunctional lipid probes for comprehensive studies of single lipid species in living cells, Proc. Natl Acad. Sci. USA, vol.114, pp.1566-1571, 2017.

F. Zunke, Reversible conformational conversion of alpha-synuclein into toxic assemblies by glucosylceramide, Neuron, vol.97, p.110, 2018.

, AUTHOR CONTRIBUTIONS

B. A. , J. H. K-;-m.-and, and P. ,