Sustainable bioenergy for climate mitigation: developing drought-tolerant trees and grasses - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue Annals of Botany Année : 2019

Sustainable bioenergy for climate mitigation: developing drought-tolerant trees and grasses

G. Taylor
  • Fonction : Auteur correspondant
  • PersonId : 1058229

Connectez-vous pour contacter l'auteur
I.S. Donnison
  • Fonction : Auteur
Donal Murphy-Bokern
  • Fonction : Auteur
  • PersonId : 1009680
Michele Morgante
Marie-Béatrice Bogeat-Triboulot
Rishikesh P. R. P. Bhalerao
  • Fonction : Auteur
  • PersonId : 957143
M. Hertzberg
  • Fonction : Auteur
A. Polle
  • Fonction : Auteur
A. Harfouche
  • Fonction : Auteur
F. Alasia
  • Fonction : Auteur
V. Petoussi
  • Fonction : Auteur
D. Trebbi
  • Fonction : Auteur
K. Schwarz
  • Fonction : Auteur
Joost J. B. Keurentjes
  • Fonction : Auteur
M. Centritto
  • Fonction : Auteur
J. Flexas
  • Fonction : Auteur
E. Grill
  • Fonction : Auteur
S. Salvi
  • Fonction : Auteur
W.J. Davies
  • Fonction : Auteur

Résumé

Background and Aims Bioenergy crops are central to climate mitigation strategies that utilize biogenic carbon, such as BECCS (bioenergy with carbon capture and storage), alongside the use of biomass for heat, power, liquid fuels and, in the future, biorefining to chemicals. Several promising lignocellulosic crops are emerging that have no food role-fast-growing trees and grasses-but are well suited as bioenergy feedstocks, including Populus, Salix, Arundo, Miscanthus, Panicum and Sorghum. • Scope These promising crops remain largely undomesticated and, until recently, have had limited germplasm resources. In order to avoid competition with food crops for land and nature conservation, it is likely that future bio-energy crops will be grown on marginal land that is not needed for food production and is of poor quality and subject to drought stress. Thus, here we define an ideotype for drought tolerance that will enable biomass production to be maintained in the face of moderate drought stress. This includes traits that can readily be measured in wide populations of several hundred unique genotypes for genome-wide association studies, alongside traits that are informative but can only easily be assessed in limited numbers or training populations that may be more suitable for genomic selection. Phenotyping, not genotyping, is now the major bottleneck for progress, since in all lignocellulosic crops studied extensive use has been made of next-generation sequencing such that several thousand markers are now available and populations are emerging that will enable rapid progress for drought-tolerance breeding. The emergence of novel technologies for targeted genotyping by sequencing are particularly welcome. Genome editing has already been demonstrated for Populus and offers significant potential for rapid deployment of drought-tolerant crops through manipulation of ABA receptors, as demonstrated in Arabidopsis, with other gene targets yet to be tested. • Conclusions Bioenergy is predicted to be the fastest-developing renewable energy over the coming decade and significant investment over the past decade has been made in developing genomic resources and in collecting wild germplasm from within the natural ranges of several tree and grass crops. Harnessing these resources for climate-resilient crops for the future remains a challenge but one that is likely to be successful.

Dates et versions

cea-02363571 , version 1 (14-11-2019)

Identifiants

Citer

G. Taylor, I.S. Donnison, Donal Murphy-Bokern, Michele Morgante, Marie-Béatrice Bogeat-Triboulot, et al.. Sustainable bioenergy for climate mitigation: developing drought-tolerant trees and grasses. Annals of Botany, 2019, 124 (4), pp.513-520. ⟨10.1093/aob/mcz146⟩. ⟨cea-02363571⟩
95 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More