Function Learning with Carbon Nanotube-based Synapses

To cite this version:

HAL Id: cea-02362633
https://hal-cea.archives-ouvertes.fr/cea-02362633
Submitted on 15 Nov 2019
Function Learning with Carbon Nanotube-based Synapses

V. Derycke,1,2 K. Gacem,1 J.-M. Retrouvey,2 D. Chabi,3 G. Agnus,1 D. Brunel,1 T. Cabaret,1 L. Fillaud,1 O. Segut,1 A. Filoramo,1 W. Zhao,2 C. Gamrat,1 B. Jousselme,1 J-O. Klein2

1CEA Saclay, IRAMIS, F-91191 Gif sur Yvette, France, 2IEF, Université de Paris-Sud, UMR 8622, Orsay, F-91405 and CNRS, Orsay, France, 3CEA Saclay, LIST, F-91191 Gif sur Yvette, France

The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build new circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We recently showed that carbon-nanotube based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm [1].

This work is based on photosensitive carbon nanotube transistors called OG-CNTFETs (optically gated carbon nanotube FETs) that we studied in details first as photo-detectors and then as memory devices [2,3]. We then showed that these devices can be used as resistive memory elements [4] and proposed ways to implement them to store synaptic weights in neural network circuits [5,6]. The proposed implementation is ideally suited for the parallel learning of multiple functions in a crossbar array of OG-CNTFETs as shown by simulations [6].

At the experimental level, using devices not scaled down, we also showed that the same ensemble of 8 devices can be trained multiple times to code successively any 3-input linearly separable Boolean logic function despite device-to-device variability. This work represents one of the very few demonstrations of actual function learning with synapses based on nano-scale building blocks [1]. The potential of such approach for the parallel learning of multiple and more complex functions will be discussed. Finally we explored the scalability of such strategy by evaluating programming speed [7] and size issues [8] in single-nanotube based devices.

Such use of 3-terminal devices as resistive memory elements, while powerful from a function learning perspective, also presents limitations in terms of ultimate scaling. We thus turned to the study of 2-terminal memristors incorporating carbon nanotubes (not as switching medium, but as nano-scale electrodes) [9]. In this presentation, the pros and cons of both approaches will be compared.

Fig. 1 (top) optical microscope image of a line of OG-CNTFETs and SEM image of one device. (middle) principle of the learning circuit with differential inputs and conventional electronics as neuron. (bottom) example of 3 particular 3-input logic functions learned successively by the same series of CNT-devices [1].

This work is was supported by the French ANR (Panini ANR-07-ARFU-008 and Moorea ANR-12-BS03-004 Projects), the C’NANO IdF (Cinamon Project) and the EU (Nabab Project FP7-216777).