A. Albert, Estimating the infinitesimal generator of a continuous time, finite state Markov process, Annals of Mathematical Statistics, vol.38, pp.727-753, 1962.

;. J. Billingsley, N. Chiquet, M. Limnios, and . Eid, Modeling and estimating the reliability of stochastic dynamical systems with markovian switching, ESREL 2006 -Safety and Reliability for managing Risks, 1961.

, Méthodes probabilistes pour les équations de la physique, Synthèse. Eyrolles, 1989.

M. H. Davis, Markov Models and Optimization, Monographs On statistics and Applied Probability, vol.49, 1993.

S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quarterly Journal of Mechanics and Applied Mathematics, vol.4, pp.129-156, 1951.

. Härdle, Applied Nonparametric Regression, 1990.

A. Jankunas and R. Z. Khasminskii, Estimation of parameters of linear homogeneous stochastic differential equation, Stochastic Processes and their Applications, vol.72, pp.205-219, 1997.

S. Korolyuk and N. Limnios, Stochastic Systems in Merging Phase Space, 2005.

A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, 2004.

B. Lapeyre and E. Pardoux, Méthodes de Monte-Carlo pour les équations de transport et de diffusion, 1998.

K. Lin and J. N. Yang, A stochastic theory of fatigue crack propagation, AIAA Journal, vol.23, pp.117-124, 1985.

B. , Stochastic Differential Equations, 2003.

A. Sadek and N. Limnios, Nonparametric estimation of reliability and survival function for continuous time finite Markov process, Journal of Statistical Planning and Inference, vol.133, pp.1-21, 2005.

K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, 1991.

B. F. Spencer, J. Tang, and M. E. Artley, A stochastic approach to modeling fatigue crack growth, Stochastic Approach to Fatigue, vol.114, pp.1628-1635, 1989.

H. Tanaka, Importance sampling simulation for a stochastic fatigue crack growth model, Proceeding of ICASP8, vol.2, pp.907-914, 1999.

A. Tsurui and H. Ishikawa, Application of the Fokker-Plank equation to a stochastic fatigue crack growth model, Structural Safety, vol.4, pp.15-29, 1986.

D. A. Virkler, B. M. Hillberry, and P. K. Goel, The statistical nature of fatigue crack propagation, Journal of Engineering Material Technology ASME, vol.101, pp.148-153, 1979.

J. N. Yang and S. D. Manning, A simple second order approximation for stochastic crack growth analysis, Engineering Fracture Mechanics, vol.53, pp.677-686, 1996.