A. Burke, Ultracapacitors: Why, how, and where is the technology, J. Power Sources, vol.91, pp.37-50, 2000.

D. Qu and H. Shi, Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources, vol.74, pp.99-107, 1998.

A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, vol.157, pp.11-27, 2006.

P. Simon and Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems, Acc. Chem. Res, vol.46, pp.1094-1103, 2013.

C. Emmenegger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora et al., Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism, vol.41, pp.539-547, 2003.

V. O. Khavrus, M. Weiser, M. Fritsch, R. Ummethala, M. G. Salvaggio et al., Application of carbon nanotubes directly grown on aluminum foils as electric double layer capacitor electrodes, Chem. Vap. Depos, vol.18, pp.53-60, 2012.

T. Chen and L. Dai, Carbon nanomaterials for high-performance supercapacitors, vol.16, pp.272-280, 2013.

H. Zhang, G. Cao, Y. Yang, and Z. Gu, Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes, J. Electrochem. Soc, vol.155, p.19, 2008.

E. O. Fedorovskaya, L. G. Bulusheva, A. G. Kurenya, I. P. Asanov, N. A. Rudina et al., Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method, Electrochim. Acta, vol.139, pp.165-172, 2014.

S. Lagoutte, P. Aubert, M. Pinault, F. O. Tran-van, M. Mayne-l'hermite et al., Poly(3-methylthiophene)/Vertically Aligned Multi-walled Carbon Nanotubes: Electrochemical Synthesis, Characterizations and Electrochemical Storage Properties in Ionic Liquids, Electrochim. Acta, vol.130, pp.754-765, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01075928

F. Lou, H. Zhou, F. Huang, F. Vullum-bruer, T. D. Tran et al., Facile synthesis of manganese oxide/aligned carbon nanotubes over aluminium foil as 3D binder free cathodes for lithium ion batteries, J. Mater. Chem. A, issue.1, p.3757, 2013.

H. Chen, S. Zeng, M. Chen, Y. Zhang, and Q. Li, Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors, vol.92, pp.271-296, 2015.

S. K. Pal, S. Talapatra, S. Kar, L. Ci, R. Vajtai et al., Time and temperature dependence of multi-walled carbon nanotube growth on Inconel 600, Nanotechnology, vol.19, p.45610, 2008.

M. Delmas, M. Pinault, S. Patel, D. Porterat, C. Reynaud et al., Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates, Nanotechnology, vol.23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724248

M. R. Arcila-velez, J. Zhu, A. Childress, M. Karakaya, R. Podila et al., Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors, Nano Energy, vol.8, pp.9-16, 2014.

V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, vol.58, pp.2-39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067024

M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle et al., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem. Phys. Lett, vol.338, pp.101-107, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00144727

C. Singh, M. S. Shaffer, and A. H. Windle, Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method, vol.41, pp.359-368, 2003.

R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian et al., Continuous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett, vol.303, pp.467-474, 1999.

S. S. Meysami, A. A. Koós, F. Dillon, M. Dutta, and N. Grobert, Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: III. Towards upscaling, vol.88, pp.148-156, 2015.

C. Castro, M. Pinault, S. Coste-leconte, D. Porterat, N. Bendiab et al., Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition, Carbon N. Y, vol.48, pp.3807-3816, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515587

P. Boulanger, L. Belkadi, J. Descarpentries, D. Porterat, E. Hibert et al., Towards large scale aligned carbon nanotube composites: An industrial safe-by-design and sustainable approach, J. Phys. Conf. Ser, vol.429, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854425

N. Yoshikawa, T. Asari, N. Kishi, S. Hayashi, T. Sugai et al., An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition, Nanotechnology, vol.19, p.245607, 2008.

Z. Gao, X. Zhang, K. Zhang, and M. M. Yuen, Growth of Vertically Aligned Carbon Nanotube Arrays on Al Substrates through Controlled Diffusion of Catalyst, J. Phys. Chem. C, vol.119, pp.15636-15642, 2015.

S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime et al., Millimeter-tall carbon nanotube arrays grown on aluminum substrates, Carbon N. Y, vol.130, pp.834-842, 2018.

S. Liatard, K. Benhamouda, A. Fournier, R. Ramos, C. Barchasz et al., Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries, Chem. Commun, vol.51, pp.7749-7752, 2015.

R. Lin, P. Taberna, S. Fantini, V. Presser, C. R. Pérez et al., Capacitive Energy Storage from ?50 to 100 ? C Using an Ionic Liquid Electrolyte, J. Phys. Chem. Lett, vol.2, pp.2396-2401, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00864201

S. Dörfler, I. Felhösi, T. Marek, S. Thieme, H. Althues et al., High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum, J. Power Sources, vol.227, pp.218-228, 2013.

H. Almkhelfe, J. Carpena-nuñez, T. C. Back, and P. B. Amama, Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets, Nanoscale, vol.8, pp.13476-13487, 2016.

A. Szabó, E. Kecsenovity, Z. Pápa, T. Gyulavári, K. Németh et al., Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate, vol.7, p.9557, 2017.

M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud et al., Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers, Nano Lett, vol.5, pp.2394-2398, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00084691

C. Castro, M. Pinault, D. Porterat, C. Reynaud, and M. Mayne-l'hermite, The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes, vol.61, pp.585-594, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00955747

L. Bokobza, J. L. Bruneel, and M. Couzi, Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black, Chem. Phys. Lett, vol.590, pp.153-159, 2013.

R. A. Dileo, B. J. Landi, and R. P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J. Appl. Phys, vol.101, p.64307, 2007.

A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B Condens. Matter Mater. Phys, vol.64, pp.1-13, 2001.

E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett, vol.77, pp.2421-2423, 2000.

R. Reit, J. Nguyen, and W. J. Ready, Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates, Electrochim. Acta, vol.91, pp.96-100, 2013.

J. Xia, F. Chen, J. Li, and N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol, vol.4, pp.505-509, 2009.

J. Bouillonnec, Elaboration et Etude des Propriétés Mécaniques et Thermiques de Matériaux Constitués de Nanotubes de Carbone Verticalement Alignés, 2015.

R. Xiang, G. Luo, W. Qian, Q. Zhang, Y. Wang et al., Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes, Adv. Mater, vol.19, pp.2360-2363, 2007.

S. Jeong, J. Lee, H. C. Kim, J. Y. Hwang, B. C. Ku et al., Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: New insights into growth and growth termination, Nanoscale, vol.8, pp.2055-2062, 2016.

A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Eres, In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A, vol.81, pp.223-240, 2005.

L. Zhu, D. W. Hess, and C. Wong, Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics, J. Phys. Chem. B, vol.110, pp.5445-5449, 2006.

Y. Zhang, J. M. Gregoire, R. B. Van-dover, and A. J. Hart, Supporting Information for Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes, J. Phys. Chem. C, vol.114, pp.6389-6395, 2010.

D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura et al., Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis, Phys. Rev. Lett, vol.95, p.56104, 2005.

E. Einarsson, Y. Murakami, M. Kadowaki, and S. Maruyama, Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements, Carbon N. Y, vol.46, pp.923-930, 2008.

Y. Zhang, J. M. Gregoire, R. B. Van-dover, and A. J. Hart, Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes, J. Phys. Chem. C, vol.114, pp.6389-6395, 2010.

P. Landois, M. Pinault, S. Rouzière, D. Porterat, C. Mocuta et al., In situ time resolved wide angle X-Ray diffraction study of nanotube carpet growth: Nature of catalyst particles and progressive nanotube alignment, vol.87, pp.246-256, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339084

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI