P. Aagaard and H. C. Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations, Am. J. Sci, vol.282, pp.237-285, 1982.

S. L. Brantley and L. Stillings, Feldspar dissolution at 25°C and low pH, Am J. Sci, vol.296, pp.101-127, 1996.

J. A. Budz and G. Nancollas, The mechanism of dissolution of hydroxyapatite and carbonated apatite in acidic solutions, J. Cryst. Growth, vol.91, pp.490-496, 1988.

C. Chaïrat, E. H. Oelkers, J. Schott, and J. Lartigue, a) An experimental study of the dissolution rates of Nd-britholite, an analogue of an apatite structured actinide bearing waste storage host, J. Nucl. Mater, 2006.

C. Chaïrat, E. H. Oelkers, J. Schott, and J. Lartigue, b) A combined potentiometric, electrokinetic and spectroscopic study of fluorapatite surface composition in aqueous solutions and consequences on solubility properties, 2006.

. Acta,

K. O. Chin and G. H. Nancollas, Dissolution of Fluorapatite. A constantcomposition kinetics study, Langmuir, vol.7, pp.2175-2179, 1991.

K. O. Chin, M. Johnsson, E. J. Bergey, M. J. Levine, and G. H. Nancollas, A constant composition kinetics study of the influence of salivary cystatins, statherin, amylase, and human serum albumin on Hydroxyapatite dissolution, Coll. Surf. A: Physicochem. Eng. Asp, vol.78, pp.229-234, 1993.

M. R. Christoffersen, J. Dohrup, and C. J. , Kinetics of growth and dissolution of calcium hydroxyapatite in suspensions with variable calcium to phosphate ratio, J. Cryst. Growth, vol.186, pp.283-290, 1998.

S. V. Dorozhkin, Acidic dissolution mechanism of natural fluorapatite II. Nanolevel of investigations, J. Cryst. Growth, vol.182, pp.133-140, 1997.

P. Fenter, P. Geissbühler, E. Dimasi, G. Srajer, L. B. Sorensen et al., Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity, Geochimica et Cosmochimica Acta, vol.64, pp.1221-1228, 2000.

M. W. Guidry and F. T. Mackenzie, Experimental study of ignous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates, Geochim. Cosmochim. Acta, vol.67, pp.2949-2963, 2003.

A. L. Herbelin and J. C. Westall, FITEQL version 3.2, a computer program for determination of chemical equilibrium constants from experimental data, 1996.

J. Johnson, G. Anderson, and D. Parkhurst, Database from 'thermo.com.V8.R6.230' prepared by at, 2000.

S. J. Kölher, N. Harouiya, C. Chaïrat, and E. H. Oelkers, Experimental studies of REE fractionation during water-mineral interactions: REE release rates during apatite dissolution from pH 2, Chem. Geol, vol.8, issue.9, pp.168-182, 2005.

A. C. Lasaga, Transition State theory, Rev. Min, vol.8, pp.135-169, 1981.

E. H. Oelkers, General kinetic description of multioxide silicate mineral and glass dissolution Geochim, Cosmochim. Acta, vol.65, pp.3703-3719, 2001.

E. H. Oelkers and J. Schott, An experimental study of enstatite dissolution and the mechanism of pyroxene/pyroxenoid dissolution, Geochim. Cosmochim. Acta, vol.65, pp.1219-1231, 2001.

E. H. Oelkers, J. Schott, and D. , The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions, Geochim. Cosmochim. Acta, vol.58, pp.2011-2024, 1994.

D. Parkhurst, PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One Dimensional Transport, and Inverse Geochemical Calculations, 1998.

O. S. Pokrovsky and J. Schott, Processes at the magnesium-bearing carbonates/solution interface. II. Kinetics and mechanism of magnesite dissolution, Geochim. Cosmochim. Acta, vol.63, pp.881-897, 1999.

O. S. Pokrovsky and J. Schott, Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12, Geochim. Cosmochim. Acta, vol.64, pp.3313-3325, 2000.

O. S. Pokrovsky and J. Schott, Kinetics and mechanism of dolomite dissolution in neutral to alkaline solution revisited, Am. J. Sci, vol.301, pp.597-626, 2001.

O. S. Pokrovsky and J. Schott, Surface chemistry and dissolution kinetics of divalent metal carbonates, Environ. Sci. Technol, vol.36, pp.426-432, 2002.

O. S. Pokrovsky and J. Schott, Experimental study of brucite dissolution and precipitation in aqueous solutions : surface speciation and chemical affinity control, Geochim. Cosmochim. Acta, vol.68, pp.31-45, 2004.

O. S. Pokrovsky, J. Schott, and F. Thomas, Processes at the magnesium-bearing carbonates/solution interface. I. A surface speciation model for magnesite Geochim, Cosmochim. Acta, vol.63, pp.863-880, 1999.

H. G. Schaeken, R. M. Verbeeck, F. C. Driessens, and H. P. Thun, , vol.84, pp.881-890, 1975.

W. Stumm, Chemistry of the Solid-Water Interface, 1992.

W. Stumm and J. Morgan, Aquatic chemistry, Chemical Equilibria and Rates In Natural Waters Wiley-Interscience Publication, vol.1022, 1996.

W. Stumm and E. Wieland, Dissolution of oxide and silicate minerals: Rates depend on surface speciation, Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters, pp.367-400, 1990.

E. Valsami-jones, K. V. Ragnarsdottir, A. Putnis, B. Bosbach, A. J. Kemp et al., The dissolution of apatite in the presence of aqueous metal, pp.2-7, 1998.

, Chem. Geol, vol.151, pp.215-233

P. Viellard and Y. Tardy, Thermochemical properties of phosphates, Phosphate Minerals, pp.171-198, 1984.

. Wagman, NBS tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Dat, p.11, 1982.

S. A. Welch, A. E. Tauton, and J. Banfield, Effect of microorganisms and microbial metabolites on apatite dissolution, Geomicrobiology Journal, vol.19, pp.343-367, 2002.

W. White and G. H. Nancollas, Quantitative study of enamel dissolution under conditions of controlled hydrodynamics, J. Dent. Res, vol.56, pp.524-530, 1977.

E. Wieland, B. Wehrli, and W. Stumm, The coordination chemistry of weathering: III-Generalisation of dissolution rates of minerals, Geochim. Cosmochim. Acta, vol.52, pp.1969-1981, 1988.

L. Wu, F. Willis, and P. W. Schindler, Surface complexation of calcium minerals in aqueous solution, J. Coll. Inter. Sci, vol.147, pp.178-185, 1991.