S. R. Arridge and W. R. Lionheart, Nonuniquenessin diffusion-based optical tomography, Optics Letters, vol.23, pp.882-884, 1998.

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, vol.20, pp.399-418, 2004.

G. Bal and A. Tamasan, Inverse source problems in transport equations, SIAM J. Math. Anal, vol.39, issue.1, pp.57-76, 2007.

L. B. Barichello, R. D. Garcia, and C. E. Siewert, On inverse boundarycondition problems in radiative transfer, Trans. Th. Statist. Phys, vol.57, pp.405-410, 1997.

G. Beylkin, The inversion problem and applications of the generalized Radon transform, Commun. Pure Appl. Math, vol.37, pp.579-99, 1984.

N. Bleistein and J. K. Kohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys, vol.18, issue.2, pp.194-201, 1977.

L. Bourhrara, New variational formulations of the neutron transport equation, Trans. Th. Statist. Phys, vol.33, pp.93-124, 2004.

K. M. Case and P. F. Zweifel, Linear Transport Theory, 1967.

E. S. Chalhoub and H. F. De-campos-velho, Multispectral reconstruction of bioluminescence term in natural waters, Appl. Num. Math, vol.47, pp.365-376, 2003.

M. Choulli and P. Stefanov, An inverse boundary problem for the stationary transport equation, Osaka J. Math, vol.36, issue.1, pp.87-104, 1998.

R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology, 1993.

D. V. Finch, Uniqueness for the attenuated x-ray transform in the physical range, Inverse Problems, vol.2, pp.197-203, 1986.

B. J. Hoenders, The uniqueness of inverse problems, pp.41-82, 1978.

B. J. Hoenders, Existence of invisible nonscattering objects and nonradiating sources, J. Opt. Soc. Am. A, vol.14, pp.262-266, 1997.

E. W. Larsen, The inverse source problem in radiative transfer, J. Quant. Spec. Radiat. Transf, vol.15, pp.1-5, 1975.

E. W. Larsen, Solution of multidimensional inverse transport problems, J. Math. Phys, vol.25, pp.121-125, 1984.

E. W. Larsen, Solution of three dimensional inverse transport problems, Trans. Th. Statist. Phys, vol.17, pp.147-167, 1988.

K. Liou, An Introduction to Atmospheric Radiation, 2002.

N. J. Mccormick, Inverse radiative transfer problems: a review, Nucl. Sci. Eng, vol.112, pp.185-198, 1992.

N. J. Mccormick and I. Ku??er, Singular eigenfunction expansions in neutron transport theory, Advances in Nuclear Science and Technology, vol.7, pp.181-282, 1973.

M. Mokhtar-kharroubi, Mathematical Topics in Neutron Transport Theory, 1997.

M. Mokhtar-kharroubi and A. Zeghal, Annales de la Faculté des Sciences de Toulouse Université Paul Sabatier, vol.IX, pp.487-507, 2000.

F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, vol.17, pp.113-119, 2001.

R. G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Math, vol.40, pp.145-167, 2002.

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, vol.18, pp.677-700, 2002.

S. D. Pautz, Verification of transport codes by the method of manufactured solutions: the ATTILA experience, Proc. ANS International Meeting on Mathematical Methods for Nuclear Applications, 2001.

R. Sanchez, Duality, Green's functions and all that, Trans. Th. Statist. Phys, vol.27, pp.445-478, 1998.

R. Sanchez and N. J. Mccormick, General solutions to inverse transport problems, J. Math. Phys, vol.22, pp.847-855, 1981.

R. Sanchez and N. J. Mccormick, Numerical evaluation of optical singlescattering properties using multiple-scattering inverse transport methods, J. Quant. Spec. Radiat. Transf, vol.28, pp.169-184, 1982.

C. E. Siewert, The inverse problem for a finite slab, Nucl. Sci. Eng, vol.67, pp.259-260, 1978.

C. E. Siewert, On the inverse problem for a three-term phase function, J. Quant. Spec. Radiat. Transf, vol.22, pp.441-446, 1979.

C. E. Siewert, An inverse source problem in radiative transfer, J. Quant. Spec. Radiat. Transf, vol.50, pp.603-609, 1993.

S. Stephany, H. F. De-campos-velho, F. M. Ramos, and C. D. Mobley, Identification of inherent optical properties and bioluminescence source term in a hydrologic optics problem, J. Quant. Spec. Radiat. Transf, vol.67, pp.113-123, 2000.

L. K. Sundman, R. Sanchez, and N. J. Mccormick, Ocean optical source estimation with widely spaced irradiance measurements, Appl. Opt, vol.37, pp.3793-3803, 1998.

R. Sanchez and N. J. Mccormick,

Z. Tao, N. J. Mccormick, and R. Sanchez, Ocean source and optical property estimation from explicit and implicit algorithms, Appl. Opt, vol.33, pp.3265-3275, 1994.

V. S. Vladimirov, Mathematical Problems in the One-Velocity Theory of Particle Transport, Atomic Energy of Canada Limited, 1963.

H. C. Yi, R. Sanchez, and N. J. Mccormick, Bioluminescence estimation from ocean, Appl. Opt, vol.31, pp.822-830, 1992.

P. F. Zweifel, The canonical inverse problem, Trans. Th. Statist. Phys, vol.28, pp.171-179, 1999.