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ON THE UNIQUENESS OF THE INVERSE SOURCE
PROBLEM FOR LINEAR PARTICLE TRANSPORT THEORY

RICHARD SANCHEZ

Commissariat à l’Energie Atomique, Direction de l’Energie Nucléaire, Service
d’Etudes de Réacteurs et de Mathématiques Appliquées

NORMAN J. McCORMICK

University of Washington, Department of Mechanical Engineering, Seattle,
Washington

Inverse source problems for time-independent linear transport with data from in-
vasive and noninvasive detectors are analyzed. The former inverse problem is
proven to have a unique solution, while for the latter we construct counterex-
amples that prove that the problem is underdetermined for the general case of
anisotropic sources and prove that it has a unique solution for isotropic sources
and scattering. Using duality we propose and analyze a general class of inverse
source algorithms. The emphasis is on establishing new inversion techniques and
in proving uniqueness or nonuniqueness as well as to find, when possible, ways
to regularize the inverse source problem.

Keywords: Particle transport, Inverse problems, Radon transform, Non-
radiating sources, Regularization

1. Introduction

We consider steady-state, linear particle transport in an open do-
main D ⊂ R

3 with boundary ∂D of outward normal n+:

Bψ = S, x ∈ X,

ψ = ψ− + βψ, x ∈ �−,
(1)
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The Uniqueness of the Inverse Source Problem 237

where x = (r, E ,Ω) is a point in phase space X = {x, r ∈ D, E
∈ E,Ω ∈ S2}, E is the energy domain, S2 the unit sphere,
�− = {x, r ∈ ∂D, E ∈ E,Ω ∈ S2,Ω · n+ < 0} is the incoming
boundary of X , S and ψ− are, respectively, the internal source and
the incoming angular flux. The Boltzmann operator is

B = Ω · ∇ + � − H,

with H the scattering operator

(Hψ)(x) =
∫

d E ′
∫

dΩ′�s (r, E ′ → E ,Ω′ · Ω)ψ(r, E ′,Ω′).

Also, in (1) β stands for an albedo operator

(βψ)(x) =
∫

�+
db x ′β(x ′ → x)ψ(x ′), x ∈ �−,

where �+ = {x, r ∈ ∂D, E ∈ E,Ω ∈ S2,Ω · n+ > 0} is the exiting
boundary of X and db x = |Ω · n+| dSd E dΩ. Henceforth we shall
assume that problem (1) corresponds with a physically realizable
situation. An equivalent statement is to say that (1) describes a
subcritical problem, i.e., the associated homogeneous problem

Bψ = 0, x ∈ X,

ψ = 0, x ∈ �−,

admits the unique solution ψ = 0.
Inverse methods associated with linear transport problem

(1) seek to recover cross section data � and �s (Siewert,1979;
Sanchez McCormick, 1981, 1982; Larsen, 1984, 1988; Choulli
and Stefanov,1998), the albedo β (Barichello et al., 1997) or the
source S (Yi et al.,1992) in terms of measurements of ψ and/or
the boundary fluxes ψ− and ψ+ = ψ |�+ . Early work is reviewed
elsewhere (McCormick,1992). In this work we are interested in
the inverse source problem for which cross section and albedo
data are known, and one seeks to recover the internal source from
flux measurements. Such inverse algorithms are based on dif-
ferential operators or integral equations that are ill-conditioned
and magnify measurement errors (Siewert,1993; Tao et al.,1994;
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Sundman et al.,1998; Stephany et al.,2000; Chalhoub de Campos
Velho,2003). This is aggravated by the fact that often the experi-
menter only has access to a partial set of the required data and the
remaining data have to be reconstructed by approximate interpo-
lation procedures. In this work we shall bypass the ill-conditioned
aspects of inverse algorithms and discuss only the uniqueness of
the inverse source problem.

We shall discuss invasive and noninvasive inverse problems.
In the former, one has access to the interior flux ψ , while in the
latter, only boundary fluxes can be measured. For the invasive in-
verse problem uniqueness is a consequence of the existence the-
orem for the solution of linear transport problem (1).

In the special case of the one-group problem (1) for trans-
port at constant energy,

�s (r, E ′ → E ,Ω′ · Ω) = δ(E − E ′)�s (r, E ,Ω′ · Ω),

Larsen (1975) and then Zweifel (1999) have proved uniqueness
for the noninvasive inverse problem in a semi-infinite slab but only
for isotropic sources. In the presence of anisotropic sources, the
noninvasive inverse problem can have more than one solution,
as seen by considering the particular case of a three-dimensional
medium with purely absorbing medium, H = 0, with interior
source S. For this case we can use an exponential transformation
to define a new source

S ′(xR) = e sg(R)τ(xR ,x)S(x), x, xR ∈ X,

where xR = (r − RΩ, E ,Ω), sg(R) is the sign of R , τ(xR , x)
= ∫ R

0 �(xR ′)dR ′ is the optical distance between xR and x, and R
may depend on x with the constraint xR ∈ X . Clearly, the source
S ′(xR) produces the same exiting flux as the source S(x) and
therefore the noninvasive inverse source problem does not have
a unique solution. A more interesting example that accounts
for scattering can be derived via the exponential transformation
ψ(x) → e f (r)ψ ′(x), where f (r) is a function with bounded gradi-
ent such that f |∂D = 0. Using this form in Equation (1) gives the
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following equation for ψ ′(x):

Bψ ′ = S ′, x ∈ X,

ψ ′ = ψ− + βψ ′, x ∈ �−,

with the new source

S ′(x) = e − f (r)(S − ψΩ · ∇ f )(x). (2)

Notice that the exponential transformation preserves the
boundary fluxes; i.e., ψ ′|� = .ψ |�. Therefore, both sources S and
S ′ produce the same exiting flux. These examples do not contra-
dict the result established by Larsen for S isotropic because S ′ is
anisotropic, but it suggests the fact that the general noninvasive
inverse problem can be degenerate.

Nonuniqueness for the inverse source problem is a well-
established fact in the field of acoustics and electromagnet-
ics (Bleistein and Kohen, 1977; Hoenders,1978; Arridge,1998)
where it is associated with the existence of so-called nonradiat-
ing sources. These sources produce a field that vanishes outside a
finite spatial domain. Recently Hoenders (1997) applied this idea
to the transport equation to obtain a procedure to construct in-
ternal sources that produce a zero exiting flux, and he concluded
nonuniqueness for the noninvasive inverse problem as well as
the existence of nonradiating sources for linear transport. How-
ever, the sources defined by Hoenders’ technique are not positive
everywhere and his conclusions do not apply to physical (posi-
tive) sources. This caveat can be easily avoided, and in Sec. 2 we
use Hoenders’ procedure to show nonuniqueness for the general
noninvasive inverse problem for positive anisotropic sources. Our
construction is straightforward but, for completeness, in the Ap-
pendix we have revised the machinery of the adjoint Green’s func-
tion used by Hoenders to demonstrate the existence of non posi-
tive, nonradiating sources.

In Sec. 2 we also consider the special case of isotropic sources
and prove uniqueness for the noninvasive inverse problem for
energy-dependent isotropic sources with isotropic scattering. Our
proof consists on recasting the problem in the form of a three di-
mensional attenuated Radon transform (AtRT) and then using
the proof of uniqueness for the inverse of the AtRT (Beylkin,
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1984; Finch, 1986; Novikov, 2002a,2002b; Natterer, 2001; Bal,
2004). The section ends with an analysis of a regularization tech-
nique for the general source inverse problem and with a discus-
sion of the relation between the inverse source problem and the
so-called canonical inverse problem.

In Sec. 3 we briefly examine a family of invasive and noninva-
sive inverse source methods based on duality and give an explicit
example for a homogeneous medium based on the use of Case’s
singular eigenfunctions. Conclusions are given in the last section
where a number of open problems are proposed.

2. Analysis of the inverse source problem

2.1. Invasive inverse source problem

We consider transport problem (1) in an open domain D with
a regular, piecewise C1 boundary in the Lp functional setting, i.e.
S ∈ Lp , ψ− ∈ Lp

− and ψ ∈ W p , where, with the Lebesgue measures
dx = drd E dΩ and db x = |Ω · n+| dSd E dΩ, Lp = Lp (X, dx), Lp

−
= Lp (�−, db x), and W p = { f, f ∈ Lp ,Ω · ∇ f ∈ Lp , f |�− ∈ Lp

−},
p ∈ [1, ∞). We note that functional space W p also can be
specified by replacing the condition f |�− ∈ Lp

− by f |�+ ∈ Lp
+

= Lp (�+, db x) (Dautray and Lions, 1993).
Under general conditions on the cross section data, if prob-

lem (1) is subcritical then there is an isomorphism (Bourhrara,
2005; Dautray and Lions, 1993)

π : Lp × Lp
− → W p ,

S, ψ− �→ ψ.

If we consider an invasive inverse source problem, where measure-
ments of the flux in the interior of the domain are made, then the
above isomorphism shows that the inverse source problem has a
unique solution explicitly given by S = Bψ . However, the numer-
ical evaluation of derivatives with unavoidable measurement er-
rors leads to a very ill-conditioned inverse algorithm. In the next
section we discuss a better conditioned inverse method that also
requires measurements of the boundary fluxes ψ− and ψ+, where
ψ+ = ψ |�+ is the flux exiting the domain.
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Often the experimenter has access to only the boundary
fluxes. The question arises as to whether such noninvasive source
inverse methods have a unique solution. Clearly, the map π

induces a linear continuous morphism

π+ : Lp × Lp
− → Lp

+,

S, ψ− �→ ψ+.
(3)

Unfortunately, the mapping π+ proves to be only an epimorphism
(Dautray,1985) and, therefore, the noninvasive inverse problem
ψ−, ψ+ → S does not have a unique solution in general. Now we
construct examples to prove that, indeed, the solution of this in-
verse problem is nonunique.

2.2. Noninvasive inverse source problem (NISP)

A necessary and sufficient condition for nonuniqueness is that the
kernel of the application S → ψ−, ψ+ contain non zero elements.
Or, in other words, that there exist a nonradiating source Snr 	= 0
such that the transport problem

Bψnr = Snr , x ∈ X,

ψnr = 0, x ∈ �−,
(4)

admits a solution with zero exiting flux

ψnr = 0, x ∈ �+. (5)

To prove that the noninvasive inverse source problem is un-
derdetermined for general anisotropic sources, we shall use a re-
cent result in the literature (Hoenders, 1997; Pautz, 2001). The
general idea is to construct an internal source Snr that gives zero
exiting flux. Let Dnr ⊆ D be a bounded open subset, Xnr its as-
sociated phase space, and ψnr (x) ∈ W p a function with support
Xnr such that ψnr |�∩Dnr

= 0. Note that ψnr is absolutely continu-
ous along trajectories, i.e., ψnr (r + tΩ, E ,Ω) is differentiable in t
(Vladimirov, 1963). Clearly, ψnr is a solution of the transport equa-
tion with source Snr = Bψnr and zero boundary fluxes, ψnr |� = 0.
This proves that source Snr is a nonradiating source: (ψnr )+ = 0.

A different way of constructing nonradiating sources is by tak-
ing the difference between two sources of the type in (2) for two
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different functions f1(r) and f2(r):

Snr = e − f1(r)(S − ψΩ · ∇ f1) − e − f2(r)(S − ψΩ · ∇ f2),

where ψ is the flux produced by source S with zero incoming flux.
The corresponding flux is ψnr (x) = [e − f1(r) − e − f2(r)]ψ(x).

We conclude that any proof of existence of a unique solution
for the NISP has to be based on some sort of regularization; i.e., a
restriction on the type of sources considered.

A characterization of nonradiating sources arises from the
observation that the flux produced by a physical (positive) source
is never zero, at least for physically bounded cross sections, and
therefore a nonradiating source Snr cannot be overall positive. In-
deed, consider the integral form of the transport equation

ψnr (x) = ψnr (xR)e −τ(xR ,x) +
∫ R

0
dR ′e −τ(xR ′ ,x)q (xR ′), x, xR ∈ X,

(6)
where xR = (r − RΩ, E ,Ω), τ(xR , x) is the optical distance
between xR and x, and

q = Hψnr + Snr

is the local emission source. By using (6) with x ∈ (�nr )+ and xR ∈
(�nr )−, where the flux is zero, we find that the integral along the
back trajectory within Xnr must vanish:∫ R

0
dR ′e −τ(xR ′ ,x)q (xR ′) = 0.

Because in a subcritical domain the emission density q produced
by a positive source is also positive, we conclude that the source
Snr must change sign in Xnr .

The lack of positivity is not an obstacle, however, for the con-
struction of internal physical (positive) sources that will produce
the same exiting flux ψ+ on �+. Consider (1) with a positive
source S and let Dnr be a domain where the minimum value of the
source is strictly positive, inf x∈Xnr S(x) = Smin > 0. In the manner
described earlier we can construct an infinite number of sources
Snr with support Dnr and such that their resultant fluxes cancel
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on the boundary ∂Dnr and in the outside domain. Any of these
sources can be scaled so that the overall source S + Snr is positive
everywhere. By linearity the solution of (1) with source S + Snr is
the sum of the solutions, ψ + ψnr , and, therefore, the exiting flux
is the same for positive sources S and S + Snr .

Nonuniqueness in the reconstruction of an anisotropic
source is illustrated in a recent work by Bal (2004) who consider
two-dimensional transport in a purely absorbing medium with an
anisotropic source and seeks to determine the source in terms of
flux boundary data. In this work he considers anisotropic sources
with compact support that can be written as a Fourier series in ϕ,

S(r, ϕ) = ∑N
k=−N Sk(r)e ikϕ, S−k = Sk,

where r ∈ R
2 is the position in the plane and ϕ ∈ [0, 2π) is the

planar coordinate for the angular direction, and derives an ex-
pression for the inverse of the two-dimensional attenuated Radon
transform. He then finds that the measured exiting fluxes pro-
vide only two independent equations for the determination of the
source and derives an inverse algorithm for the reconstruction of
the source

Sω(r, ϕ) = S0(r) + S1(r) cos(ϕ + ω) (7)

for given ω ∈ [0, 2π).
This work clearly illustrates that the exiting flux does not

provide enough information for the determination of a general
anisotropic source. More importantly, Bal demonstrate that there
are only two independent equations that can be established from
the known boundary data and that, therefore, only two functions
S0(r) and S1(r) can be determined, as in (7). This is a conse-
quence of the known redundancy of order two of the exiting flux
data for the case of an isotropic source. Bal’s proof for the unique-
ness of the inverse of the AtRT is equivalent to proving that there
are no nonradiating sources of the form (7).

1. EXAMPLE FOR A SLAB

Practical constraints on the construction of the flux ψnr are
that it must be bounded with bounded derivatives and that it must
vanish on ∂Dnr . One can therefore consider factorized fluxes of
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the form ψnr (x) = f (r)g(E )h(Ω), where g and h are bounded
and positive and the constraints are to be satisfied by f . As an
example, let us consider transport in a one-dimensional slab z ∈
(0, L). For z ∈ Dnr = (a, b), 0 ≤ a < b ≤ L, and with x = (z, E , µ)
we define

ψnr (x) = (z − a)(b − z)g(E )h(µ).

This is a positive flux in (a, b) that vanishes on its boundaries a
and b . The corresponding source is obtained as

Snr (x) = θDnr (z) {µ(a + b − 2z)g(E )h(µ)

+(z − a)(b − z)[�(z, E )g(E )h(µ) − K(E , µ)]} ,

where K(E , µ) = [H (gh)](E , µ) and θDnr is the characteristic
function of Dnr : θDnr (z) = 1 for z ∈ Dnr , θDnr (z) = 0 otherwise. As
expected, this source is non positive everywhere, as can be read-
ily seen by realizing that the second contribution vanishes at the
boundaries. For the particular case of an isotropic flux, h(µ) = 1,
K(E ) = ∫

d E ′�s (z, E ′ → E )g(E ′). In this particular case, with an
isotropic flux in domain Dnr , the source is linearly anisotropic.

2.3. Noninvasive problem with isotropic sources

The preceding proof of nonuniqueness applies to anisotropic
sources. Larsen (1975) showed that a unique solution exists if
the source is isotropic. This result was established for one group
transport in a homogeneous, semi-infinite slab under the condi-
tions that ψ− and ψ+ are Hölder-continuous and that S and ψ

are exponentially bounded. Zweifel (1999) proved, for the same
one-group problem with no internal sources, that the mapping
ψ+ → ψ− is bijective, and this led to a different derivation of
Larsen’s result.

To our knowledge, however, at the present time the unique-
ness result for the noninvasive isotropic source problem has not
been extended to the general energy-dependent transport prob-
lem in a three dimensional domain. We turn now to a proof
of uniqueness for the case of transport with isotropic scattering.
In our proof we employ a uniqueness result from the field of
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emission tomography. We consider transport in a purely absorb-
ing infinite medium with an isotropic source q

(Ω · ∇ + �)ψ = q , x ∈ X,

ψ = 0, x ∈ �−,
(8)

where q ∈ L2, � is sufficiently smooth and both functions have
compact support. In emission tomography the inverse source
problem consist of determining q from the exiting boundary flux
ψ+ = ψ |�+ . To this end one expresses the flux exiting the system
as the three dimensional attenuated Radon transform (AtRT)

(P�q )(x) =
∫

R

dRe −τ(xR ,x∞)q (xR), (9)

where now x ∈ TS2 = {(r,Ω), r ∈ R3,Ω ∈ S2, r · Ω = 0} and xR =
(r + RΩ,Ω).

The existence of the inverse of the AtRT has been proven
under general conditions on q and � for the two dimensional
AtRT (Beylkin,1984; Natterer, 2001; Novikov, 2002a, 2002b; Bal,
2004). This result applies to higher dimensions but with increas-
ing redundancy of the data ψ+. In particular, in three dimensions
the source is uniquely reconstructed from the inverses of the two-
dimensional AtRTs for all planes orthogonal to a fixed angular
direction (Novikov, 2002; Bal Tamasan, 2006).

We now consider the energy-dependent transport problem
in a three-dimensional domain D with isotropic scattering and
source and zero incoming boundary flux, ψ− = 0. We extend the
domain to the entire space by preserving the smoothness and
bounded support of � and by setting q = 0 in R

3\D so the ex-
tended transport problem can be written as in (8), where now q =
Hψ +S contains scattering and source. We note that q is isotropic
and that the energy E appears as a parameter. From the existence
of the inverse of the three-dimensional AtRT (Novikov,2002) we
conclude that there is a unique isotropic q satisfying boundary
data (9). It remains to obtain the source. By solving transport
Equation (8) we obtain the flux ψ and from it the collision term
Hψ and, finally, the source S = q −Hψ . Since every step from ψ+
to the final expression for S preserves uniqueness we have proved
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Theorem 1. The noninvasive inverse source problem for energy-
dependent three-dimensional transport admits a unique solution for
isotropic scattering and sources.

In a recent work, Bal and Tamasan (2006) considered one-
group transport with anisotropic scattering and used a Neumann
series perturbation of the Novikov inversion formula for the AtRT
to reconstruct an isotropic source from flux boundary data. The
result is valid when the anisotropic component of the scattering is
sufficiently small and, therefore, offers a constructive demonstra-
tion for theorem 1 in the one-group setting. We recall that Larsen
(1975) has proved uniqueness for one-group transport in a semi-
infinite slab with arbitrary anisotropy of scattering. Our conjec-
ture is that Theorem 1 must be true for general anisotropy of scat-
tering. In this respect, we note that the general transport source
problem can be written as an equivalent problem in a purely ab-
sorbing medium, as in (8), with source

q = S + Hψ = (1 − H L−1)−1S,

where H is the scattering operator and L = Ω · ∇ + � is the
streaming operator. It seems plausible that the exiting angular
flux, shown to have enough information to determine two func-
tions S0(r) and S1(r) for the anisotropic source in (7), also can
determine in a unique way the isotropic source S(r) hidden in
the source term q , regardless of the anisotropy of scattering.

In the next section we investigate the possibility of applying-
Theorem 1 to the regularization of the inverse source problem
for anisotropic sources and isotropic scattering.

2.4. Regularization of the noninvasive inverse source problem

Here we consider general anisotropic sources of the form
S(r, E ,Ω). We introduce an equivalence relation R in the set of
sources Lp for transport problem (4): SRS ′ iff S and S ′ have the
same boundary flux ψ� = {ψ−, ψ+}. Relation R defines a parti-
tion of the set of sources into equivalent classes. These classes
are the inverse images by π+ of the elements of π+(Lp ) ⊆ Lp

+,
where π+ denotes the epimorphism in (3). Hence, denoting by
R[S] the class containing source S, R[0] = π−1

+ {0} is the set of
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all nonradiating sources and the difference between two sources
in the same class is a nonradiating source. This implies that every
class can be identified by a unique element in the class. It follows
that the inverse source problem can be regularized if we are able
to come up with a rule that identifies a single element in each
class. In the case of isotropic scattering we just proved that a class
cannot contain two different isotropic sources so we can formu-
late:

Proposition 1. For isotropic scattering there is at most one isotropic source
for each exiting flux ψ+ ∈ Lp

+.

This result defines a natural regularization for the general
inverse problem that consists of determining the unique isotropic
source satisfying the boundary data. However, this regularization
is of limited utility because one has to be sure that the measured
exiting flux is the result of an isotropic source. This raises the
question of whether there are exiting distributions ψ+ that are
not the result of an isotropic source or, equivalently, if there are
classes that do not contain an isotropic element. Unfortunately
for the experimentalist the answer to this question is positive, as
the following example shows.

Consider transport in a purely absorbing medium and let
R[Sω] be the class containing a source as in (7) with S1 	= 0. As-
sume now that S0(r) is an equivalent isotropic source. This implies
that the problem with source Sω −S0 produces a zero exiting flux.
The last source has the same structure as Sω and, as shown by Bal
(2004), the inverse problem with source (7) has a unique solution
so we must have S0(r) = S0(r) and S1(r) = 0. We conclude that
R[Sω] does not contain an isotropic source. Bal found that from
given exiting flux data there was a unique source of the form (7)
for each ω ∈ [0, 2π), and therefore all the sources Sω′ obtained
with Bal’s inversion algorithm from the exiting flux produced by
Sω belong to the class R[Sω]; however, this does not exhaust the el-
ements in this class because we still can add nonradiating sources:
R[Sω] = Sω +R[0]. We note, in particular, that the source Sω −Sω′

is nonradiating.
One could argue that the example is of limited value because

it applies only to transport in a purely absorbing medium. To show
that the example also holds in the more general context of energy-
dependent transport with isotropic scattering we first generalize
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Bal’s uniqueness result to a class of weakly anisotropic sources.
This class is implicitly defined by the set of functions

f (ϕ) = ∑N
k=1( fke ikϕ + fk, e −ikϕ), f1 	= 0,

∫ 2π

0 dϕ f (ϕ) = 0 (10)

with Fourier coefficients fk such that the norm of operator K (de-
fined bellow) is smaller than one.

Proposition 2. Consider two dimensional transport in a purely absorb-
ing medium with total cross section �(r) and an anisotropic source of the
form

S(r, ϕ) = S0(r) + S1(r) f (ϕ), r ∈ R
2, ϕ ∈ [0, 2π), (11)

where � is smooth and decaying exponentially at infinity, S0 and S1 have
compact support and f (ϕ) can be written as a finite Fourier series as
in (10). Then, for weakly anisotropic f (ϕ), S0 and S1 can be uniquely
determined from the inversion of the AtRT P�S.

Proof. Our proof is based on the analysis in (Bal, 2004) that we
briefly summarize hereafter. Following Bal we pose z = x + i y and
λ = e ikϕ and write the transport equation for ψ(z, λ) = ψ(r, ϕ):

(λ∂z + λ−1∂z + �)ψ = S.

In this equation ∂z = (1/2)(∂x − i∂y ), ∂z = (1/2)(∂x + i∂y ),
�(z) and S(z, λ) = ∑N

k=−N fk(z)λk with f0(z) = S0(z) and fk(z)
= S1(z) fk for k 	= 0. By considering this equation for λ ∈ C, one
verifies that ψ(z, λ) is sectionally analytic for |λ| > 1 and 0 < |λ| <

1, but has a pole of finite multiplicity at z = 0 and is not necessar-
ily of order O(λ−1) at infinity. Next, by subtracting the diverging
terms at z = 0 and |z| = ∞, one verifies that the jump of the mod-
ified function φ(z, λ) across |λ| = 1 is a function of ψ+. There-
fore, the reconstruction problem can be cast as a Riemann-Hilbert
problem for φ(z, λ). Once this function is computed from the in-
verse of the Hilbert transform, the reconstruction formulas are
obtained from the expression of ψ(z, λ) in the vicinity of λ = 0.
The technique used by Bal consists of expressing ψ(z, λ) in terms
of the Green’s function, G(z, λ) = [sgn(|λ|− 1)]/[π(λz −λ−1z)],
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of operator (λ∂z + λ−1∂z) and expanding the resulting expression
in powers of λ:

ψ(z, λ) =
{ ∑∞

k=1(HkS)(z, λ)λk, |λ| < 1,∑∞
k=1(HkS)(z, λ)λ−k, |λ| > 1.

Here the Hk are integral operators, related to Cauchy inte-
grals, that satisfy

∞∑
k=1

λk(λ∂z + λ−1∂z + �)Hk(z) = I,

where I is the identity operator, and, therefore, can be explicitly
computed by equating like powers of λ in the above expression.
In particular, for k = 0 we have ∂zH1 = 1. The final result is that
there are only two independent reconstruction formulas (for de-
tails see Bal, 2004) that, for the source in (11), are :∑N

k=1( fkHk − fkHk)S1 = ϕ0,

H1S0 + (
∑N +1

k=2 fk−1Hk − ∑N −1
k=I fk+1Hk)S1 = ϕ1.

In these equations ϕ0(z) and ϕ1(z) depend on the measured ex-
iting fluxes. We write the first equation as (A + B)S1 = ϕ0, where
operator A = f1H1 − f1H1 has an inverse (Bal, 2004) and B =∑N

k=2( fkHk − fkHk) is bounded. This equation has a unique so-
lution if the Fourier coefficients { fk, k = 2, N } are small enough
so that the norm of operator K = A−1B is smaller than 1. Once
S1(z) has been determined, we use the formula ∂zH1 = {1 to ob-
tain S0(r) from the second equation:

S0 = ∂zϕ1 −
[
∂z

( N +1∑
k=2

fk−1Hk −
N −1∑
k=1

fk+1Hk

)]
S1.

�

Clearly, the class of weakly anisotropic sources contains the
case f (ϕ) = cos(ϕ + ω), ω ∈ [0, 2π) considered by Bal. We can
then state
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Proposition 3. Under the conditions of Proposition 2 the noninva-
sive source problem for energy-dependent three dimensional transport with
isotropic scattering and an anisotropic source of the form

S(x) = S0(r, E ) + S1(r, E ) f (Ω), r ∈ R
3, E ∈ E,Ω ∈ S2, (12)

admits a unique solution for f (Ω),
∫

dΩ f (Ω) = 0, weakly anisotropic.

Proof. We write the transport source problem with collisions as an
equivalent problem P in a purely absorbing medium with source
q = S + Hψ . For isotropic scattering S0 = Hψ is isotropic and
q is of the form (12). Let n be a unit vector and consider trans-
port problem P on a plane σ orthogonal to n. Note that the an-
gular direction Ω for particles streaming on σ can be described
by a single coordinate ϕσ ∈ [0, 2π) so f (Ω)|σ = h0 + h(ϕσ ) with∫ 2π

0 dϕσ h(ϕσ ) = 0. Hence, the restriction of source (12) to σ can
be written as in (11): S(x)|σ = Sσ0(r, E ) + S1(r, E )h(ϕσ ), where
Sσ0 = (S0 + S0 + h0S1)

∣∣
σ
. By Proposition 2, for weakly enough

anisotropy this source can be uniquely reconstructed on σ by in-
version of the two dimensional AtRT from the exiting flux data
on σ . Thus, choosing n such that f (ϕσ ) = f (Ω)|σ 	= 0, for every
energy E the planar problem has a unique inverse solution q |σ
with (S0 + S0)

∣∣
σ

and S1|σ uniquely determined. The reconstruc-
tion of the three dimensional sources S0 +S0 and S1 is achieved by
applying this procedure to every plane orthogonal to n. Note by
ψ+[S1 f ] the exiting flux produced by source S1(r, E ) f (Ω). Then,
by theorem 1 there is a unique isotropic source S0 that produces
the exiting flux ψ+[S0] = ψ+[S] − ψ+[S1 f ]. �

In the above reconstruction one needs to write f |σ for Ω · n
= 0 as a function f (ϕσ ) of the planar angular coordinate ϕσ . Let
(θ, ϕ) and (θ, ϕ)n be the polar and azimuthal coordinates of Ω
and n in the fixed system of coordinates (x, y , z) with unit vec-
tors (ex, ey , ez). We define a local system of coordinates (x, y , z)σ

for transport on plane σ by applying a rotation R such that Rez
= (ez)σ = n. We choose R = R2R1, where R1 is the rotation of axis
z and angle ϕn and R2 is the rotation of axis R1ey and angle θn. By
measuring the planar angular coordinate ϕσ by the angle between
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Ω and Rex we have

µ = −√
1 − µ2

n cos ϕσ ,

tan ϕ = (µn tan ϕn + tan ϕσ )/(µn − tan ϕn tan ϕσ ),
(13)

where µ = Ω · ez = cos θ and µn = n · ez = cos θn.
From proposition 3 it follows that in the general setting

of energy-dependent transport with isotropic scattering the class
R[S] with S as in (12) and S1 	= 0 does not contain any isotropic
source for f (Ω) weakly anisotropic. A simple example is an
anisotropic source with f (Ω) = Ω · ez for which f (ϕσ ) behaves
as cos ϕσ , for µn 	= 0. More general examples can be constructed
by using the fact that the reconstruction can be done for any n
such that f (Ω)|σ 	= 0. Assume an anisotropic factor of the form
f (Ω) = g(µ)h(ϕ). For µn = ±1 we have f (ϕσ ) = g(0)h(ϕσ ±ϕn),
then for any g(µ) such that g(0) 	= 0 and for any h(ϕ) weakly
anisotropic, in particular for h(ϕ) = cos ϕ, the source in (12)
can be reconstructed in a unique way. Also, for µn = 0 we have
f (ϕσ ) = g(− cos ϕσ )h(π/2±ϕn) and the same conclusion applies
for any h(ϕ) such that h(π/2 ± ϕn) 	= 0 and for g(µ) = µ.

The implication of Proposition 3 is that, with no a priori
knowledge of the type of source producing the radiation field
the experimentalist can only use the flux boundary data to try
to determine an isotropic source. If the source is found then the
problem has an infinite number of solutions of the form S + Snr ,
where Snr is a nonradiating source. If the problem does not admit
an isotropic solution then one has to look for an anisotropic one.
However, the ill-conditioning due to the inverse algorithm and to
the errors in the measured data can mar the boundary between
the two situations and one may find an isotropic solution for a
problem that, with exact measurements, does not accept one.

2.5. Relation with the canonical inverse problem

Zweifel (1999) has defined the canonical inverse problem as find-
ing the entering flux from the exiting flux for a transport problem
without sources,

Bψ = 0, x ∈ X,

ψ = ψ−, x ∈ �−,
(14)



252 R. Sanchez and N. J. McCormick

and has demonstrated uniqueness for the inverse map ψ− → ψ+
for one-group transport in a semi-infinite slab.

Here we analyze the relation between the canonical and the
source inverse problems. We introduce the mapping

i : Lp
− → Lp ,

ψ− �→ S (15)

that associates to ψ− its first collision source S = iψ−
= H Tψ−. Here H is the scattering operator and Tψ− is the
uncollided flux

(Tψ−)(x) = e −τ(x−,x)ψ−(x−),

where x− is the entering point for the trajectory through x. The
solution of (14) can be written as the sum of the uncollided and
the collided fluxes, ψ = Tψ− + ψcol , where the latter is solution
of the transport equation with first collided source iψ− and zero
incoming flux:

Bψcol = iψ−, x ∈ X,

ψcol = 0, x ∈ �−.

In a semi-infinite slab geometry no particle entering the domain
can leave it without undergoing collisions and, therefore, ψ− and
its first collision source iψ− give the same exiting flux. For this
geometry, mapping (15) associates to each ψ− a unique source
iψ− that is equivalent to ψ− in the sense that it produces the same
exiting flux. As an aside comment we note that iψ− is not the only
source with this property: any source of the form iψ− + Snr , where
Snr is a nonradiating source, will give the same exiting flux. For
isotropic scattering source iψ− is isotropic and theorem 1 shows
that iψ− is the only isotropic source that gives the same exiting
flux than ψ−, which proves the equivalence between the canonical
and the isotropic source inverse problems for energy dependent
transport in a semi-infinite slab with isotropic scattering.

Regarding the uniqueness of the canonical inverse problem
in three dimensional geometry, it is obvious that uniqueness exists
for transport in a purely absorbing medium. Whether this result
extends to the case with scattering remains an open problem.
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3. Inverse source methods based on duality

3.1. General case

A general formulation for the inverse source problem can be ob-
tained from duality (Sanchez,1998). The duality relation for the
transport equation is a consequence of Green’s formula

( f, Bg) = (B∗ f, g) + < f, g >, f ∈ Lp ′
, g ∈ Lp , (16)

where B∗ = −Ω · ∇ + � − H ∗ is the formal adjoint of B, H ∗ is
similar to H but with kernel �∗

s (r, E ′ → E ,Ω′ · Ω) = �s (r, E →
E ′,Ω′ · Ω), p ′ is the conjugate index of p ,

( f, g) =
∫

X
dx( f g)(x) (17)

is the volume scalar product and

< f, g >=
∫

�

Ω · dSd E dΩ( f g)(x) (18)

is the associated surface scalar product. The latter can be writ-
ten as the difference between the contributions on the exiting
and entering boundaries, < f, g >=< f, g >+ − < f, g >− with
the scalar products

< f, g >±=
∫

�±
db x( f g)(x).

To the direct source problem (1) we associate the adjoint
problem

B∗ψ∗ = S∗, x ∈ X,

ψ∗ = ψ∗
+ + β∗ψ∗, x ∈ �+

(19)

with S∗ ∈ Lp ′
, ψ∗

+ ∈ Lp ′
+ , and ψ∗ ∈ W p ′

. From duality formula (16)
with f → ψ∗ and g → ψ we write

(ψ∗, S) = (S∗, ψ)+ < ψ∗, ψ > . (20)
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The last equation provides an inverse source method that
requires volume and surface measurements of the flux. (An el-
ementary example of this was constructed for slab geometry by
Siewert (1978)). The source can be obtained from (20) by look-
ing for a solution in a finite subspace F . A formal approach con-
sists of introducing a partition of the geometric domain D = ∪Di
and looking for a piecewise source in F = ⊕Fi , where Fi =
{ f (r)g(E )h(Ω), f ∈ PN , g ∈ EG , h ∈ QK }. Typically, PN is a finite
polynomial space with support Di , EG is a piecewise constant
(multigroup) approximation, and QK is the subspace generated
by the spherical harmonics of degree ≤K . The resulting numeri-
cal inverse algorithm reads

∑
i,n,m,k

Si,nmk(ψ∗, fi,ngi,mhi,k) = (S∗, ψ)+ < ψ∗, ψ > .

In order to have a determined system of equations for the
Si,nmk , one would have to compute as many independent adjoint
fluxes as there are source coefficients. However, the construction
of the auxiliary adjoint pairs (ψ∗, S∗) for use in (20) can be done
by postulating any suitable functions ψ∗ and computing the cor-
responding sources and boundary values as S∗ = B∗ψ∗ and ψ∗|�.
These adjoint fluxes also can be defined in terms of factorized
functions, ψ∗(x) = f (r)g(E )h(Ω), and even with discontinuous
f ’s. In the latter case, the discontinuities will be accounted for
by introducing delta-like sources in (20). Better yet, to avoid the
discontinuities, one may follow the ideas discussed in Section 2
and construct fluxes (ψ∗)′ with supports in regions that are more
accessible to measurements. This choice would, of course, give
information for the source only in the supports of the (ψ∗)′. Fi-
nally, note that if the adjoint problems are solved with the ad-
joint albedo, i.e. < β∗ f, g >+=< f, βg >−, then < ψ∗, ψ >=<

ψ∗
+, ψ >+ − < ψ∗, ψ− >− and, therefore, the albedo does not en-

ter the inverse source algorithm.
A different approach to source reconstruction for invasive in-

verse methods has been suggested by Mokhtar-Kharroubi (1997);
in this work, the author introduces suitable measures in veloc-
ity space and particular constraints in the physical data and
the source to prove that the source can be explicitly obtained
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from two moments of the angular flux (Mokhtar-Kharroubi,1997;
Mokhtar-Kharroubi and Zeghal, 2000).

In practice, inside measurements can prove to be difficult or
impossible to obtain, such as for planetary atmospheres and most
biological applications. In order to obtain a noninvasive source
inverse method, the adjoint problem in (19) has to have zero
source, S∗ = 0. For this case (20) yields the inverse method

(ψ∗, S) = < ψ∗, ψ >, (21)

which only requires measurement of the entering and exiting
fluxes at the surface of the domain. However, as discussed in
Section 2, this inverse method does not have a unique solution
for anisotropic sources. This means that in the presence of un-
known anisotropic sources one has to revert to inverse method
(20) and, therefore, detailed flux measurements will have to be
carried inside the domain. However, for isotropic scattering or
anisotropic scattering in one-group theory the problem admits a
unique isotropic solution.

3.2. Use of singular eigenfunctions

Often in practical applications of radiation problems one may
neglect the energy dependence and consider a one-group prob-
lem. For an isotropic medium this implies that RB∗ = BR and
Rβ∗ = βR, where R is the operator that inverts the angular di-
rection, (R f )(Ω) = f (−Ω). Hence, the solution of adjoint prob-
lem (19) can be written as ψ∗ = Rψ̃ , where ψ̃ is the solution of a
related direct problem:

Bψ̃ = S̃, x ∈ X,

ψ̃ = ψ̃− + βψ̃, x ∈ �−
(22)

with S̃ = RS∗ and ψ̃− = Rψ∗
−.

Furthermore, if the medium is homogeneous, then one can
use Caseology (Case and Zweifel, 1967) to obtain analytical solu-
tions for this problem. For simplicity we consider here the case
of slab geometry for the noninvasive inverse algorithm (21) for
which S̃ = RS∗ = 0. Then (22) admits homogeneous solutions of
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the form

ψν(x) = e −τ/νφν(µ), ν ∈ σ, (23)

where φν(µ) are Case’s singular eigenfunctions normalized to∫ 1
−1 φν(µ)dµ = 1. The spectrum σ contains a continuum [−1, 1]

for which the φν’s are distributions and a finite discrete spec-
trum σd with regular eigenfunctions. Here we have measured the
spatial location in optical distance units so that x = (τ, µ) and
B = µ∂τ + 1 − H .

Singular eigenfunctions have been extensively discussed in
the literature; e.g., Case and Zweifel (1967) or McCormick and
Kuščer (1973). Here we limit ourselves to mention that the φν’s
form a complete orthogonal base for Hölder continuous func-
tions in [−1, 1] and satisfy the full-range orthogonality relation

[φν, φν ′] =
∫ 1

−1
µdµ(φνφν ′)(µ) = N (ν)δ(ν − ν ′),

where N (ν) is the square of the norm of φν and the delta function
is to be understood as defined over σ .

In the present case it is more expedient to directly use the
homogeneous solution ψ∗ = Rψ̃ , with ψ̃ as in (23), in (21) and
disregard any boundary conditions constraint. Then the noninva-
sive inverse source method (21) gives the “distributed-source law”

(e τ/νφν, S) =< e τ/νφν, ψ >, ν ∈ σ, (24)

where we have used the property Rφν = φ−ν . A particular case is
that of a purely absorbing medium for which the eigenvalue spec-
trum consists only of σ = [−1, 1] and φν = δ(ν − µ), −1 ≤ ν ≤ 1.
In this case S can be viewed as a blackbody source and (24) is
an equation sometimes solved in temperature inversion computa-
tions for atmospheres (Liou, 2002).

Another interesting special case of (24) arises for a Dirac
delta source, S = Sδ(τ)δ(τ −τ0). With τ+

0 = τ0 +ε and τ−
0 = τ0 −ε,

we now have

e τ0/ν < φν, [ψ − Sδ(τ0) + O(ε)] >= 0.
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Because the term in brackets depends only on µ and the φν are
complete, for ε → 0 we obtain the “localized-source law” (Case
Zweifel, 1967)

< ψ >= µ−1Sδ(τ0).

Equation (24) also provides a quick way of proving that the
solution of the inverse source problem for a half-space τ ≥ 0 has
a unique isotropic solution. For such a source, only the spectrum
ν ≤ 0 may be used to avoid e τ/ν for τ → ∞, so (24) becomes∫ ∞

0
dτS(τ)e τ/ν = −

∫ 1

−1
µdµψ(0, µ)φν(µ), ν ≤ 0.

Substitution of s = −1/ν shows that S(τ) is

S(τ) = −L−1
[ ∫ 1

−1
µdµψ(0, µ)φ−1/s (µ)

]
, s > 0,

where L−1 is the inverse Laplace transform. From this point on,
the proof of Larsen (1975) can be followed to prove uniqueness
of S(τ).

Finally, with regard to the case of the invasive inverse trans-
port problem in (20), one could construct pairs of solutions
(ψ̃, S̃) of the form

ψ̃(x) = A(τ)ψν(x)
S̃(x) = (∂τ A)(τ)µψν(x)

, ν ∈ σ,

where S̃(x) = (∂τ A)(τ)µψν(x) is any differentiable function, and
extract the boundary fluxes by taking traces at the boundaries.

4. Conclusions

Inverse source problems in linear transport theory can be classi-
fied as invasive and noninvasive, depending on whether they re-
quire interior flux measurements or only measurements of the
boundary fluxes. Uniqueness for the invasive case follows from
the existence theorem for the direct transport problem. This is
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not the case, however, for the noninvasive method. In this work
we have used a constructive technique given by Hoenders (1997)
to construct counterexamples of positive sources that result in the
same exiting flux, thus proving that the noninvasive inverse prob-
lem has a nonunique solution for the case of general anisotropic
sources. The proof is based on the construction of a source that
produces a zero exiting flux.

For the case of isotropic scattering we have proved that
such sources not only must change of sign but they also have to
be anisotropic. Thanks to the last property we have been able
to prove uniqueness for the noninvasive problem for isotropic
sources and scattering with no constraints in the dimensionality of
the geometry or energy domains. In contrast, the previous proofs
of uniqueness (Larsen, 1975; Zweifel, 1999) that were restricted to
one-group transport in a semi-infinite slab were based on the use
of an analytical technique to recover the source from boundary
data.

An open problem is to prove or disprove this result
for energy-dependent, three-dimensional geometry and general
anisotropy of scattering. Note that this is equivalent to a proof
that a nonradiating source necessarily must be anisotropic. The
flux resulting from a nonradiating source vanishes outside some
domain Dnr and this gives a means to analyze the local behavior
of the flux in the vicinity of the boundary of the domain. The flux
ψnr created by a nonradiating source Snr obeys (4) and (5). Let Ω
be an angular direction exiting the boundary ∂Dnr at x. Because
ψnr is differentiable a.e.w. along particle trajectories, the value of
the source at the interior location xε = (r − εΩ, E ,Ω), ε > 0, is
given by

Snr (xε) = [−∂εψnr + (� − H )ψnr ](xε).

As ε → 0 the collision term goes to zero and the term ∂εψnr be-
comes dominant so Snr (xε) ∼ −(∂εψnr )(xε). By changing the sign
of ε this argument applies also to an entering trajectory. We con-
clude that near the boundary Snr ∼ Ω · ∇ψnr . Because the flux
behaves linearly near the boundary along any trajectory one may
conclude that Snr is anisotropic or that both the source and the
gradient of the flux vanish on the boundary ∂Dnr . This argument
is neither rigorous, especially on the detail of how fast (Hψnr )(xε)
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goes to zero as ε → 0, nor conclusive but hints to the fact that
under some general conditions a nonradiating source should be
anisotropic. We believe, however, that the proof has to come
from global analysis, that is, from an extension of the construc-
tion of the inverse of the AtRT to general anisotropy of scatter-
ing. Indeed, the AtRT reconstruction of an isotropic source with
isotropic scattering uses only the exiting fluxes with directions or-
thogonal to a fixed unit vector n(µ, φ) = µez +

√
1 − µ2(cos φex +

sin φey ). Therefore, one could exploit the redundancy of the data
for µ ∈ [0, 1] and φ ∈ [0, 2π) in order to extend the result to gen-
eral anisotropic scattering.

We have introduced an equivalence relation between sources:
two sources are equivalent if they are indistinguishable by ex-
ternal flux measurements. This equivalence relation gives a par-
tition of the set of sources into classes, where every class can
be defined by a unique element of the class. This could have
led to a regularization technique for the inverse source problem
that would have consisted of determining the isotropic source
in the class. Unfortunately, as we prove with examples, there ex-
ist anisotropic sources that are not equivalent to any isotropic
source.

The relation between the inverse source problem and the
canonical inverse problem, which consists of constructing the exit-
ing flux in terms of the entering one for a sourceless problem, also
has been analyzed. We have considered energy-dependent trans-
port with isotropic scattering in a semi-infinite slab and shown that
for every entering flux ψ− there is a unique isotropic source that
produces the same exiting flux, thus extending Zweifel’s result
for one-group transport to the energy-dependent case. A problem
that remains to be solved is whether a comparable result holds for
general 3D geometry. With Tψ− and iψ−, respectively, the uncol-
lided flux and the first collision source produced by the entering
flux ψ−, the question is whether the mapping

γ : Lp
− → Lp

+,

ψ− �→ Tψ− + ψ+[iψ−]

is one-to-one. This is equivalent to prove that there is no ψ− 	= 0
that produces a zero exiting flux without internal sources.
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Finally, we have analyzed a general class of invasive and non-
invasive inverse source algorithms based on the transport duality
relation. With invasive methods it is even possible to construct an
inverse algorithm that targets the source structure in a given re-
gion and that requires only measurements of the flux within the
region. Although such a procedure may be better conditioned,
the method is equivalent to the brutal reconstruction S = Bψ . For
the case of noninvasive inverse methods we have shown how the
use of Case’s eigenfunctions can be applied to define an inverse
algorithm to recover the structure of internal isotropic sources.
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Appendix

Existence of nonradiating sources based on duality

We consider transport Equation (1) in the W p functional set-
ting. In the spirit of Sec. 2, let D′ ⊂ D be an interior domain and
ψ ′ ∈ W p (X ′) be a function that is positive, bounded with bounded
gradient, and such that ψ ′∣∣

�′ = 0. We extend ψ ′ to W p (X ) by pos-
ing ψ ′(x) = 0 for x ∈ X ′′, where X ′′ is the complementary of X ′ in
X . We shall prove that the extended function is a solution of the
direct transport problem in X , which implies that the flux exiting
and entering D is zero.

Consider the adjoint equation for the adjoint Green’s func-
tion G∗

y (x) = G∗(y → x):

B∗G∗
y = δy , x ∈ X,

G∗
y = 0, x ∈ �+,

(25)

where δy (x) = δ(x − y) is the unit Dirac mass at y ∈ X .
For any measurable regular subset Z of phase space X we

define the scalar product

( f, g)Z =
∫

Z
dx ′( f g)(x ′)

and from the definition of the adjoint we obtain for f ∈ Lp ′
and

g ∈ Lp :

( f, Bg)Z+ < f, g >�(Z)−= (B∗ f, g)Z+ < f, g >�(Z)+ . (26)
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In this equation �(Z)± are the incoming (−) and outgoing
(+) boundaries of Z and

< f, g >�(Z)±=
∫

�(Z)±
db x ′( f g)(x ′).

In particular, by using complementarity relation (26) with
g = ψ ′ and f = G∗

y , the solutions of the direct and the adjoint
transport Equations (1) and (25), we obtain

(G∗
y , S)Z + < G∗

y , ψ
′ >�(Z)− = θZ (y)ψ ′(y) + < G∗

y , ψ
′ >�(Z)+,

where θZ is the characteristic function of Z : θZ (x) = 1 for x ∈ Z ,
θZ (x) = 0 otherwise.

Finally, we apply the preceding duality relation to Z = X ′′. By
noticing that �′′

− = �′
+ ∪ �− and �′′

+ = �′
− ∪ �+ and by accounting

for the boundary condition for G∗
y and for the fact that ψ ′ = 0 on

∂D′ and S = 0 in X ′′ we obtain

θX ′′(y)ψ ′(y) =< G∗
y , ψ

′ >�− .

For y ∈ X ′ we find that < G∗
y , ψ

′ >�−= 0. Then for y ∈ X ′′ we get
ψ ′ = 0 in X ′′ and, therefore, on �+.


