C. Anderson-cook, C. Borror, M. , and D. , Response surface design evaluation and comparison, Journal of Statistical Planning and Inference, vol.139, pp.629-641, 2009.

R. Bates, R. Kenett, D. Steinberg, W. , and H. , Achieving robust design from computer simulations, Quality Technology and Quantitative Management, vol.3, pp.161-177, 2006.

M. Bayarii, J. Berger, J. Cafeo, G. Garcia-donato, F. Liu et al., Computer model validation with functional output, The Annals of Statistics, vol.35, pp.1874-1906, 2007.

A. Boukouvalas and D. Cornford, Learning heteroscedastic Gaussian processes for complex datasets, 2009.

D. Bursztyn and D. Steinberg, Screening experiments for dispersion effects, Screening -Methods for experimentation in industry, drug discovery and genetics, 2006.

V. Chen, K. Tsui, R. Barton, and M. Meckesheimer, A review on design, modeling and applications of computer experiments, IIE Transactions, vol.38, pp.273-291, 2006.

E. De-rocquigny, N. Devictor, S. Tarantola, K. Fang, R. Li et al., Design and modeling for computer experiments, 2006.

D. Ginsbourger, O. Roustant, and Y. Richet, Kriging with heterogeneous nugget effect for the approximation of noisy simulators with tunable fidelity, Proceedings of Joint Meeting of the Statistical Society of Canada and the Socit Franaise de Statistique, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00409766

T. Hastie and R. Tibshirani, Generalized additive models, 1990.

J. Helton, J. Johnson, C. Salaberry, and C. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliability Engineering and System Safety, vol.91, pp.1175-1209, 2006.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of non linear models, Reliability Engineering and System Safety, vol.52, pp.1-17, 1996.

B. Iooss, Treatment of spatially dependent variables in sensitivity analysis of model output methods, CEA, 2008.

B. Iooss, C. Lhuillier, and H. Jeanneau, Numerical simulation of transit-time ultrasonic flowmeters due to flow profile and fluid turbulence, Ultrasonics, vol.40, pp.1009-1015, 2002.

B. Iooss and M. Ribatet, Analyse de sensibilité globale de modèles numériquesà paramètres incontrôlables, Proceedings of 38èmes Journées de Statistique, 2006.

B. Iooss and M. Ribatet, Global sensitivity analysis of computer models with functional inputs, Reliability Engineering and System Safety, vol.94, pp.1194-1204, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00243156

I. Juutilainen and J. Röning, A comparaison of methods for joint modelling of mean and dispersion, Proceedings of the 11th Symposium on ASMDA, 2005.

M. Kennedy and A. O'hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society, vol.63, issue.3, pp.425-464, 2001.

J. Kleijnen, Sensitivity analysis and related analyses: a review of some statistical techniques, Journal of Statistical Computation and Simulation, vol.57, pp.111-142, 1997.

J. Kleijnen and W. Van-beers, Robustness of kriging when interpolating in random simulation with heterogeneous variances: some experiments, European Journal of Operational Research, vol.165, pp.826-834, 2005.

Y. Lee and J. Nelder, Robust design via generalized linear models, Journal of Quality Technology, vol.35, issue.1, pp.2-12, 2003.

J. Loeppky, J. Sacks, W. , and W. , Choosing the sample size of a computer experiment: A practical guide, 2008.

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics and Data Analysis, vol.52, pp.4731-4744, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00239492

P. Mccullagh and J. Nelder, Generalized linear models, 1989.

J. Nelder, A large class of models derived from generalized linear models, Statistics in Medicine, vol.17, pp.2747-2753, 1998.

J. Nelder and D. Pregibon, An extended quasilikelihood function, Biometrika, vol.74, pp.221-232, 1987.

J. Nelder and R. Wedderburn, Generalized linear models, Journal of the Royal Statistical Society A, vol.135, pp.370-384, 1972.

M. Phadke, Quality engineering using robust design, 1989.

D. Pregibon, Review of "Generalized Linear Models" by McCullagh and Nelder, Annals of Statistics, vol.12, pp.1589-1596, 1984.

, R: A Language and Environment for Statistical Computing, 2006.

R. Rigby and D. Stasinopoulos, A semi-parametric additive model for variance heterogeneity, Statistics and Computing, vol.6, pp.57-65, 1996.

J. Sacks, W. Welch, T. Mitchell, W. , and H. , Design and analysis of computer experiments, Statistical Science, vol.4, pp.409-435, 1989.

A. Saltelli, K. Chan, and E. Scott, Sensitivity analysis. Wiley Series in Probability and Statistics, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

G. Smyth, Generalized linear models with varying dispersion, Journal of the Royal Statistical Society B, vol.51, pp.47-60, 1989.

I. Sobol, Sensitivity estimates for non linear mathematical models, Mathematical Modelling and Computational Experiments, vol.1, pp.407-414, 1993.

G. Vining and R. Myers, Combining Taguchi and response-surface philosophies -a dual response approach, Journal of Quality Technology, vol.22, pp.38-45, 1990.

E. Volkova, B. Iooss, and F. Van-dorpe, Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" radwaste disposal site, Stochastic Environmental Research and Risk Assesment, vol.22, pp.17-31, 2008.

S. Wood and N. Augustin, GAMs with integrated model selection using penalized regression splines and applications to environmental modelling, Ecological modelling, vol.157, pp.157-177, 2002.

I. Zabalza, J. Dejean, and D. Collombier, Prediction and density estimation of a horizontal well productivity index using generalized linear models, ECMOR VI, 1998.