Oral - 2ème edition Smart Materials and Surfaces KOREA 2016 – 23-25 March, 2016, Songdo Convensia, Incheon, Korea

ZnFe₂O₄ nanoparticles synthesis by laser pyrolysis: interest as new anode material for lithium-ion batteries

Samantha Bourrioux¹, Luyuan Paul Wang^{1,2}, Yann Leconte¹, Madhavi Srinivasan², Zhichuan J. Xu²,
Alain Pasturel³

¹CEA, IRAMIS, NIMBE, CNRS UMR 3685, F- 91191, Gif-sur-Yvette, France
²School of Materials Science and Engineering, Nanyang Technological University, Singapore
³SIMAP, UMR CNRS 5266, Grenoble INP, BP 75, 38402 Saint-Martin d'Hères Cedex,
France

Abstract:

The development of portable devices, electric vehicles and renewable energies has motivated research works about energy storage for years. Existing lithium-ion batteries cannot reach sufficient energy density to address the needs for such applications. One of the issues limiting the energy density is the low specific capacity of the graphite anode (372 mAh.g⁻¹).

Mixed-transition metal oxides with a spinel structure ($AB_2O_4 - A$, B transition metals) appear as a promising solution to replace graphite with a higher theoretical capacity (between 750 and 1000 mAh.g⁻¹). Nanostructuration of these compounds was studied to maintain mechanical stability and to enhance lithiation kinetics. $ZnFe_2O_4$ is an interesting substitute to graphite as the storage mechanism gives rise to a theoretical capacity of 1001 mAh.g⁻¹ and among various oxides, $ZnFe_2O_4$ is cheap, abundant and non-toxic.

Compared with oxides like Fe_2O_3 , the combination of two transition metals contributes to lower the working voltage vs. Li/Li^+ (1.5V for $ZnFe_2O_4$ vs. 2.1V for Fe_2O_3).

ZnFe $_2$ O $_4$ nanoparticles were synthesized by laser pyrolysis. In this process, an aerosol containing precursors droplets produced by a nebulizer, is flown into the reactor with a carrier gas. In the reactor, a $10.6~\mu m$ -CO $_2$ laser beam decomposes the precursors to obtain nanopowders which are then collected on a filter. The key advantage of laser pyrolysis is the ability to obtain nanomaterials in large scale with a high purity while controlling the grain size with the appropriate parameters.

Solutions containing Zn(NO₃)₂.6H₂O and Fe(NO₃)₃.9H₂O dissolved in deionized water were used for the synthesis of ZnFe₂O₄ nanoparticles. Ethylene was used as sensitizer gas to absorb the CO₂ laser and allow the decomposition of the precursors whereas air and argon were tested as carrier gases. Powders of different morphologies and crystallinities were obtained and characterized by XRD, SEM, EDX, HRTEM and XPS. ZnO and Fe₂O₃ were also synthesized to compare their electrochemical performances with those of ZnFe₂O₄. All the results were compared with literature.

Keywords: ZnFe₂O₄, nanoparticles, laser pyrolysis, energy storage, lithium-ion battery, anode