J. Parkinson, An essay on the shaking palsy. 1817, J. Neuropsychiatry Clin. Neurosci, vol.14, pp.223-236, 2002.

S. K. Van-den-eeden, C. M. Tanner, A. L. Bernstein, R. D. Fross, A. Leimpeter et al., Incidence of parkinson's disease: Variation by age, gender, and race/ethnicity, Am. J. Epidemiol, vol.157, pp.1015-1022, 2003.

D. Lau, L. M. Breteler, and M. M. , Epidemiology of parkinson's disease, Lancet Neurol, vol.5, pp.525-535, 2006.

W. Dauer and S. Przedborski, Parkinson's disease: Mechanisms and models, Neuron, vol.39, pp.889-909, 2003.

K. Beyer, M. Domingo-sabat, and A. Ariza, Molecular pathology of lewy body diseases, Int. J. Mol. Sci, vol.10, pp.724-745, 2009.

I. Kawahata, S. Yagishita, K. Hasegawa, I. Nagatsu, T. Nagatsu et al., Immunohistochemical analyses of the postmortem human brains from patients with parkinson's disease with anti-tyrosine hydroxylase antibodies, Biog. Amines, vol.23, pp.1-7, 2009.

L. Maroteaux, J. T. Campanelli, and R. H. Scheller, Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal, J. Neurosci, vol.8, pp.2804-2815, 1988.

M. G. Spillantini, R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, Alpha-synuclein in filamentous inclusions of lewy bodies from parkinson's disease and dementia with lewy bodies, Proc. Natl. Acad. Sci, vol.95, pp.6469-6473, 1998.

M. G. Spillantini, R. A. Crowther, R. Jakes, N. J. Cairns, P. L. Lantos et al., Filamentous alpha-synuclein inclusions link multiple system atrophy with parkinson's disease and dementia with lewy bodies, Neurosci. Lett, pp.205-208, 1998.

S. Gribaudo, P. Tixador, L. Bousset, A. Fenyi, P. Lino et al., Propagation of alpha-synuclein strains within human reconstructed neuronal network, Stem Cell Rep, vol.12, pp.230-244, 2019.

L. Pieri, K. Madiona, and R. Melki, Structural and functional properties of prefibrillar alpha-synuclein oligomers, Sci. Rep, 2016.

W. Peelaerts, L. Bousset, A. Van-der-perren, A. Moskalyuk, R. Pulizzi et al., Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration, Nature, vol.522, pp.340-344, 2015.

K. A. Conway, J. D. Harper, and P. T. Lansbury, Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset parkinson disease, Nat. Med, vol.4, pp.1318-1320, 1998.

B. Winner, R. Jappelli, S. K. Maji, P. A. Desplats, L. Boyer et al., In vivo demonstration that alpha-synuclein oligomers are toxic, Proc. Natl. Acad. Sci, vol.108, pp.4194-4199, 2011.

F. Van-diggelen, D. Hrle, M. Apetri, G. Christiansen, G. Rammes et al., Two conformationally distinct alpha-synuclein oligomers share common epitopes and the ability to impair long-term potentiation, Plos One, vol.14, 2019.

X. Li, C. Dong, M. Hoffmann, C. R. Garen, L. M. Cortez et al., Early stages of aggregation of engineered alpha-synuclein monomers and oligomers in solution, Sci. Rep, vol.9, 1734.

T. Ban, M. Hoshino, S. Takahashi, D. Hamada, K. Hasegawa et al., Direct observation of abeta amyloid fibril growth and inhibition, J. Mol. Biol, vol.344, pp.757-767, 2004.

S. Wang, B. Xu, L. C. Liou, Q. Ren, S. Huang et al., Alpha-synuclein disrupts stress signaling by inhibiting polo-like kinase cdc5/plk2, Proc. Natl. Acad. Sci, vol.109, pp.16119-16124, 2012.

H. A. Lashuel, C. R. Overk, A. Oueslati, and E. Masliah, The many faces of alpha-synuclein: From structure and toxicity to therapeutic target, Nat. Rev. Neurosci, vol.14, pp.38-48, 2013.

A. N. Shrivastava, V. Redeker, N. Fritz, L. Pieri, L. G. Almeida et al., Alpha-synuclein assemblies sequester neuronal alpha3-na+/k+-atpase and impair na+ gradient, Embo J, vol.34, pp.2408-2423, 2015.

L. Rodriguez, M. M. Marano, and A. Tandon, Import and export of misfolded alpha-synuclein, Front. Neurosci, vol.12, 2018.

X. Mao, M. T. Ou, S. S. Karuppagounder, T. I. Kam, X. Yin et al., Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3, p.353, 2016.

M. Delenclos, T. Trendafilova, D. Mahesh, A. M. Baine, S. Moussaud et al., Investigation of endocytic pathways for the internalization of exosome-associated oligomeric alpha-synuclein, Front. Neurosci, vol.11, p.172, 2017.

R. Sharon, M. S. Goldberg, I. Bar-josef, R. A. Betensky, J. Shen et al., Alpha-synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins, Proc. Natl. Acad. Sci, vol.98, pp.9110-9115, 2001.

R. J. Perrin, W. S. Woods, D. F. Clayton, and J. M. George, Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins, J. Biol. Chem, vol.276, pp.41958-41962, 2001.

R. Sharon, I. Bar-joseph, M. P. Frosch, D. M. Walsh, J. A. Hamilton et al., The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in parkinson's disease, Neuron, vol.37, pp.583-595, 2003.

N. Shioda, Y. Yabuki, Y. Kobayashi, M. Onozato, Y. Owada et al., Fabp3 protein promotes alpha-synuclein oligomerization associated with 1-methyl-1,2,3,6-tetrahydropiridine-induced neurotoxicity, J. Biol. Chem, vol.289, pp.18957-18965, 2014.

K. Matsuo, A. Cheng, Y. Yabuki, I. Takahata, H. Miyachi et al., Inhibition of mptp-induced alpha-synuclein oligomerization by fatty acid-binding protein 3 ligand in mptp-treated mice, Neuropharmacology, vol.150, pp.164-174, 2019.

A. Cheng, Y. Shinoda, T. Yamamoto, H. Miyachi, and K. Fukunaga, Development of fabp3 ligands that inhibit arachidonic acid-induced alpha-synuclein oligomerization, Brain Res, vol.1707, pp.190-197, 2019.

M. Vila and S. Przedborski, Targeting programmed cell death in neurodegenerative diseases, Nat. Rev. Neurosci, vol.4, pp.365-375, 2003.

I. Kawahata, H. Tokuoka, H. Parvez, and H. Ichinose, Accumulation of phosphorylated tyrosine hydroxylase into insoluble protein aggregates by inhibition of an ubiquitin-proteasome system in pc12d cells, J. Neural Transm, vol.116, pp.1571-1578, 2009.

E. B. Mukaetova-ladinska and I. G. Mckeith, Pathophysiology of synuclein aggregation in lewy body disease, Mech. Ageing Dev, vol.127, pp.188-202, 2006.

L. Petrozzi, G. Ricci, N. J. Giglioli, G. Siciliano, and M. Mancuso, Mitochondria and neurodegeneration, Biosci. Rep, vol.27, pp.87-104, 2007.

S. V. Baranov, O. V. Baranova, S. Yablonska, Y. Suofu, A. L. Vazquez et al., Mitochondria modulate programmed neuritic retraction, Proc. Natl. Acad. Sci, vol.116, pp.650-659, 2019.

H. J. Majima, T. Nakanishi-ueda, and T. Ozawa, 4-hydroxy-2-nonenal (4-hne) staining by anti-hne antibody, Methods Mol. Biol, vol.196, pp.31-34, 2002.

A. Storch, A. C. Ludolph, and J. Schwarz, Dopamine transporter: Involvement in selective dopaminergic neurotoxicity and degeneration, J. Neural Transm, vol.111, pp.1267-1286, 2004.

C. Shimamoto, T. Ohnishi, M. Maekawa, A. Watanabe, H. Ohba et al., Functional characterization of fabp3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies, Hum. Mol. Genet, vol.23, pp.6495-6511, 2014.

L. A. Glantz and D. A. Lewis, Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia, Arch. Gen. Psychiatry, vol.57, pp.65-73, 2000.

F. G. Schaap, B. Binas, H. Danneberg, G. J. Van-der-vusse, and J. F. Glatz, Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene, Circ. Res, vol.85, pp.329-337, 1999.

B. Binas, H. Danneberg, J. Mcwhir, L. Mullins, and A. J. Clark, Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization, Faseb J, vol.13, pp.805-812, 1999.

I. Kawahata, S. Ohtaku, Y. Tomioka, H. Ichinose, and T. Yamakuni, Dopamine or biopterin deficiency potentiates phosphorylation at (40)ser and ubiquitination of tyrosine hydroxylase to be degraded by the ubiquitin proteasome system, Biochem. Biophys. Res. Commun, vol.465, pp.53-58, 2015.

E. Meijering, M. Jacob, J. C. Sarria, P. Steiner, H. Hirling et al., Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images, Cytom. Part. A J. Int. Soc. Anal. Cytol, vol.58, pp.167-176, 2004.

D. A. Sholl, Dendritic organization in the neurons of the visual and motor cortices of the cat, J. Anat, vol.87, pp.387-406, 1953.

T. A. Ferreira, A. V. Blackman, J. Oyrer, S. Jayabal, A. J. Chung et al., Neuronal morphometry directly from bitmap images, Nat. Methods, vol.11, pp.982-984, 2014.

J. R. Klim, L. A. Williams, F. Limone, I. Guerra-san-juan, B. N. Davis-dusenbery et al., Als-implicated protein tdp-43 sustains levels of stmn2, a mediator of motor neuron growth and repair, Nat. Neurosci, vol.22, pp.167-179, 2019.