Anharmonicity in Hybrid and Inorganic Perovskite Materials used for Photovoltaics Applications References

Arthur Marronnier, Heejae Lee, Chloé Dindault, Denis Tondelier, Bernard Geffroy, Jean Eric Bourée, Yvan Bonnassieux, Guido Roma

To cite this version:


HAL Id: cea-02340988
https://hal-cea.archives-ouvertes.fr/cea-02340988
Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Anharmonicity in Hybrid and Inorganic Perovskite Materials used for Photovoltaics Applications

Arthur Marronnier¹, Heejae Lee¹, Chloé Dindault¹, Denis Tondelier¹, Bernard Geffroy¹,², Jean-Éric Bourée¹, Yvan Bonnassieux¹ and Guido Roma³

¹ LPICM, CNRS, Ecole Polytechnique, Paris-Saclay University, France
² LCSEN, NIMBE, CEA, Paris-Saclay University, France
³ SRMP, CEA, Paris-Saclay University, France

Hybrid organic-inorganic perovskite materials have emerged over the past five years as absorber layers for new high-efficiency yet low-cost solar cells that combine the advantages of organic and inorganic semiconductors. Despite this sky rocketing evolution, the physics behind the electronic transport in these materials is still poorly understood.

Here, employing the linear response (DFPT) approach of Density Functional Theory (DFT) and frozen phonon calculations, we reveal strong anharmonic effects in the inorganic CsPbI₃ perovskite structure compared to the hybrid CH₃NH₃PbI₃ (MAPbI₃) material, and found a double-well instability at the center of the Brillouin Zone. We show that previously reported soft modes are stabilized at the actual lower symmetry equilibrium structure, which occurs in a very flat energy landscape. These findings highlight the crucial role played by temperature in these materials, showing that this perovskite structure can oscillate between two equilibrium states at room temperature. Taking into account these low energy-highly occupied phonon states into the models used for electron-phonon interactions and band gap calculations could lead to a better understanding of the electrical transport properties of perovskite solar cells.

Figure 1: Potential-energy surface from frozen phonon energy calculations of cubic CsPbI₃ for the soft phonon mode at Γ versus the displacement parameter η. The maximum displacement (η = 10) corresponds to around 0.8 Å.

Figure 2: Phonons modes of cubic CsPbI₃ at the new equilibrium position determined in Fig. 1. Using both a tight convergence threshold and the results of our frozen phonon calculations allowed us to remove the soft modes at Γ.

References: