Combined Solid-State NMR and Molecular Dynamics Study of the Structure of Strontium-Aluminosilicate glasses
Thibault Charpentier, Kirill Okhotnikov, Pierre Florian, Frank Fayon, Alexey Novikov, Louis Hennet, Daniel Neuville

To cite this version:

HAL Id: cea-02340734
https://hal-cea.archives-ouvertes.fr/cea-02340734
Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Materials
EUROMAR2018/695
Combined Solid-State NMR and Molecular Dynamics Study of the Structure of Strontium-Aluminosilicate glasses
Thibault Charpentier¹, Kirill Okhotnikov¹, Pierre Florian², Frank Fayon², Alexey Novikov², Louis Hennet², Daniel R. Neuville³
¹NIMBE, CEA SACLAY, Gif-sur-Yvette, ²CEMHTI, CNRS, Orléans, ³Géomatériaux, CNRS-IPGP, Paris, France

If selected, I agree to present my work during an oral communication: Yes

Abstract: Solid-state NMR has firmly established itself as a method of choice for providing key information for the elucidation of glass atomic-scale structure. Recently, a methodology based on the combination of DFT-NMR calculations with molecular dynamics simulations has emerged as a significant step for the improvement of the detailed interpretation of experimental NMR spectra. Using this approach, we have investigated the structure of aluminosilicate SiO₂-Al₂O₃-SrO based glass compositions which are largely unexplored systems. Glasses on the compensation line Al₂O₃ = SrO, were studied with ¹⁷O, ²⁹Si and ²⁷Al solid state NMR at high (11.7 T) and very-high (20.0 T) magnetic fields, together with neutron diffraction spectroscopy. Classical and ab-initio molecular dynamics (MD) simulations were performed and combined with calculations of NMR parameters with the DFT-GIPAW method. Computed NMR parameters were linked to local structural features to establish relationships between experimental NMR spectra and the underlying topological disorder (in terms of chemical and geometrical disorder). NMR fingerprints of debated units such as tricoordinated oxygen atoms could be predicted with the aims to assess their existence from experimental data. In agreement with experimental NMR data, MD simulations predict that aluminium is predominantly tetrahedrally coordinated for all the studied compositions with a small fraction of AlO₃ units ranging from 2-5%. Variations of the ²⁹Si NMR spectra, and to a less extent of ²⁷Al spectra, could be quantitatively correlated to the Al/Si mixing. In parallel, the Al/Si connectivities were investigated using advanced NMR techniques enabling the resolution of the ²⁹Si NMR spectrum in terms of Qₙ(mAl) units (i.e., Qₙ connected to m Al units). Simulations of ¹⁷O NMR experiments from our first-principles methodology combined to ¹⁷O-²⁷Al correlation experiments allowed extractions of Al-O-Si, Al-O-Al and Si-O-Si peaks which were found to be strongly overlapping in experimental 1D and 2D ¹⁷O MAS NMR spectra.

Disclosure of Interest: None Declared