Phase separated structures of concentrated polymer solutions
Patrick Guenoun, Hervé Manzanarez, Hernan Garate, Denis Bouyer, Andre Deratani, Catherine Faur, Mathieu Jacob, Jean-Pierre Mericq, Olivier Lorain, Catherine Pochat-Bohatier

To cite this version:

HAL Id: cea-02340260
https://hal-cea.archives-ouvertes.fr/cea-02340260
Submitted on 30 Oct 2019
Phase separation of concentrated homopolymer solutions is both of fundamental interest (the large difference in viscosity/elasticity of the two phases can lead to unusual behaviors) and of practical importance (novel porous structures can be made by this process). I will first review how 2D phase-field simulations (Fig. 1) reveal the influence of the mobility dependance with concentration for capturing features of phase separation like growth laws.[1] On the experimental side I will examine various water-soluble polymers and show how anomalous phase diagrams seem to be closely connected to unusual features of arrested-like phase separation as evidenced by light scattering and confocal microscopy. Thin films of these polymer solutions were used for making membranes (Fig. 2), avoiding the use of organic solvents. [2, 3, 4] The case of homo-polyelectrolytes is also of great interest since the theory is still controversial, as I will briefly recall. First results will be presented about phase separation upon changes in salt concentration, polymer concentration and temperature for a polyelectrolyte whose structure is also promising for membranes.

References