Carbon Nanotube and Porphyrins:Materials for Optics and Energy Applications
Abstract
The fabrication of functional hybrid materials that preserves and combines the properties of their building blocks is a central issue of nanosciences. Among the different classes of nanomaterials, carbon nanotubes are promising for electronics, opto-electronics, catalysis and composite applications. In this context the combination of nanotubes with porphyrins has been widely explored for catalytic or electron transfer purposes. Here I present two results obtained recently on the nanotube/porphyrin
composites, the first deals with the supramolecular organization in micelles of porphyrins around the nanotubes. In this work we were able to explain the Davidoff splitting observed on the absorption bands of the porphyrins by their organization around the nanotubes. The second deals with the synergic effect on catalytic activity of carbon nanotubes and strapped iron porphyrin hybrids for Oxygen Reduction Reaction (ORR). In particular, we demonstrated that the combination of both components - MWNTs and porphyrin - leads to a better catalytic activity than those of the nanotubes or the porphyrins taken separately.
This study highlights the importance of the carbon support for the catalysis. The nanotubes ensure the availability of electrons to the porphyrin catalysts and allow the ORR to occur via the 4-electron pathway, avoiding the production of hydrogen peroxide.
Domains
Material chemistry
Origin : Files produced by the author(s)
Loading...