. Afcen, Code of Design and Construction Rules for Mechanical Component in Nuclear Installations, RCC-MRX, 2013.

E. , , 2012.

F. Bertrand, Comparison of the behaviour of two core designs for ASTRID in case of severe accidents, Nuclear Engineering and Design, vol.297, pp.327-342, 2016.

F. Bertrand, Transient behavior of ASTRID with a gas power conversion system, 2016.

, Nuclear Engineering and Design, vol.308, pp.20-29, 2016.

C. , , 2018.

M. S. Chenaud, Status of ASTRID core design studies at the end of predesign phase 1, Nuclear Engineering and Technology, vol.45, p.6, 2013.

G. Damblin, M. Couplet, and I. Bertrand, Numerical studies of space-filling designs: Optimization of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00848240

D. Dupuy, C. Helbert, and J. Franco, DiceDesign and DiceEval: Two R Packages for Design and Analysis of Computer Experiments, Journal of Statistical Software, vol.65, issue.11, pp.1-38, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02065877

, EFR Non Site Specific Safety Report, 1999.

K. Fang, Wrap-around L2-discrepancy of random sampling, Latin hypercube and uniform designs, Journal of Complexity, vol.17, pp.608-624, 2001.

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2006.

G. Geffraye, CATHARE 2 V2.5_2: A single version for various applications, Nuclear Engineering and Design, vol.241, pp.4456-4463, 2011.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer series in statistics, 2008.

E. Hourcade, ASTRID Nuclear Island design: advances in French-Japanese joint team development of Decay Heat Removal systems, Proceedings of ICAPP, 2016.

M. J. Jansen, Analysis of variance designs for model output, Computer Physics Communication, vol.117, pp.35-43, 1999.

L. Gratiet, L. Marelli, S. Sudret, and B. , Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes, Handbook of Uncertainty Quantification, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428947

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics and Data Analysis, vol.52, pp.4731-4744, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00239492

G. Pujol, B. Iooss, and A. Janon, Sensitivity: Global Sensitivity Analysis of Model Outputs, 2017.

C. Rasmussen and C. Williams, Gaussian processes for machine learning, 2006.

R. Patrick, rPref: Database Preferences and Skyline Computation, 2016.

R. Carnell, lhs: Latin Hypercube Samples. R package version 0, vol.16, 2018.

A. Saltelli, Sensitivity analysis for importance assessment, Risk Analysis, vol.22, pp.1-12, 2002.

I. M. Sobol, Sensitivity analysis for non-linear mathematical models, Mathematical Modeling & Computational Experiment (Engl. Transl.), vol.1, pp.407-414, 1993.

D. Tenchine, Some thermal hydraulic challenges in sodium cooled fast reactors, Nuclear Engineering and Design, vol.240, pp.1195-1217, 2010.