, Acta Mat, vol.107, pp.424-483, 2016.

C. F. Tipper, The fracture of metals, Mettalurgia, vol.39, pp.133-137, 1949.

K. E. Puttick, Ductile fracture in metals, Phil. Mag, vol.4, pp.964-969, 1959.

A. S. Argon, J. Im, and R. Safoglu, Cavity formation from inclusions in ductile fracture, Metallurgical Transactions A, vol.6, pp.825-837, 1975.

F. A. Mcclintock, A criterion for ductile fracture by the growth of holes, J. App. Mech, vol.35, pp.363-371, 1968.

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, vol.17, pp.201-217, 1969.

L. M. Brown and J. D. Embury, The initiation and growth of voids at sec-865 ond phase particles, 3rd International Conference on the strength of metals and alloys, pp.164-168, 1973.

J. Koplik and A. Needleman, Void growth and coalescence in porous plastic solids, Int. J. Solids Struct, vol.24, pp.835-853, 1988.

V. Tvergaard, Material failure by void growth to coalescence, Adv. Ap-870 plied Mech, vol.27, pp.83-151, 1990.

S. Keralavarma, S. Hoelscher, and A. Benzerga, Void growth and coalescence in anisotropic solids, Int. J. Solids Struct, vol.48, pp.1696-1710, 2011.

B. Legarth and V. Tvergaard, Effects of plastic anisotropy and void shape on full three-dimensional void growth, J. App. Mech, vol.85, p.51007, 2018.

D. M. Tracey, Strain hardening and interaction effects on the growth of voids in ductile fracture, Eng. Fract. Mech, vol.3, pp.301-315, 1971.

L. Lecarme, C. Tekoglu, and T. Pardoen, Void growth and coalescence in ductile solids with stage III and stage IV strain hardening, Int. J. Plasticity, vol.27, pp.1203-1223, 2011.

Y. Alinaghian, M. Asadi, and A. Weck, Effect of pre-strain and work hardening rate on void growth and coalescence in AA5052, Int. J. Plasticity, vol.53, pp.193-205, 2014.

A. Hosokawa, D. S. Wilkinson, J. Kang, M. Kobayashi, and H. Toda, Void growth and coalescence in model materials investigated by high-885 resolution X-ray microtomography, Int. J. Frac, vol.181, pp.51-66, 2013.

E. Maire, P. Withers, X. Quantitative, and . Tomography, Int. Mat. Rev, vol.59, pp.1-43, 2014.

Y. X. Gan, J. W. Kysar, and T. L. Morse, Cylindrical void in a rigid-ideally plastic single crystal II: Experiments and simulations, Int. J. Plasticity, vol.22, pp.39-72, 2006.

J. Crépin, T. Bretheau, and D. Caldemaison, Cavity growth and rupture of ?treated zirconium: A crystallographic model, Acta Mat, vol.12, pp.4927-4935, 1996.

M. Pushkareva, J. Adrien, E. Maire, J. Segurado, J. Llorca et al., , p.895

, Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium, Materials Science and Engineering: A, vol.671, pp.221-232, 2016.

W. Liu, X. Zhang, J. Tang, and Y. Du, Simulation of void growth and coalescence behavior with 3D crystal plasticity theory, Comp. Mat. Sci, vol.40, pp.130-139, 2007.

S. Ha and K. Kim, Void growth and coalescence in f.c.c. single crystals, Int. J. Mech. Sci, vol.52, pp.863-873, 2010.

S. Yerra, C. Tekoglu, F. Scheyvaerts, L. Delannay, P. Van-houtte et al., Pardoen, Void growth and coalescence in single crystals, Int. J. Solids and 905 Structures, vol.47, pp.1016-1029, 2010.

C. Ling, J. Besson, S. Forest, B. Tanguy, F. Latourte et al., An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations, Int. J. Plasticity, vol.84, pp.58-87, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357790

A. A. Benzerga and J. Leblond, Ductile fracture by void growth to coales-910 cence, Adv. Applied Mech, vol.44, pp.169-305, 2010.

A. Benzerga, J. Leblond, A. Needleman, and V. Tvergaard, Ductile failure modeling, Int. J. Frac, vol.201, pp.29-80, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01668734

A. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media

, Eng. Mat. and Tech, vol.99, pp.2-15, 1977.

P. F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta. Metall, vol.33, pp.1087-1095, 1985.

A. Mbiakop, A. Constantinescu, and K. Danas, An analytical model for 920 porous single cristals with ellipsoidal voids, J. Mech. Phys. Solids, vol.84, pp.436-467, 2015.

D. Song and P. Ponte-castañeda, A finite-strain homogenization model for viscoplastic porous single crystals. I-Theory, J. Mech. Phys. Solids, vol.107, pp.560-579, 2017.

D. Song and P. Ponte-castañeda, A finite-strain homogenization model for viscoplastic porous single crystals. II-Applications, J. Mech. Phys. Solids, vol.107, pp.580-602, 2017.

J. Rice, The localization of plastic deformation, 14th International Congress on Theoretical and Applied Mechanics, pp.207-220, 1976.

J. Segurado and J. Llorca, An analysis of the size effect on void growth in single crystals using discrete dislocation dynamics, Acta Mat, vol.57, pp.1427-1436, 2009.

J. Segurado and J. Llorca, Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals, Int. J. Plast, vol.26, pp.806-819, 2010.

H. Chang, J. Segurado, and J. Lorca, Three-dimensional dislocation dynamics analysis of size effects on void growth, Scripta Mat, vol.95, pp.11-14, 2015.

L. Cheng and T. Guo, Void interaction and coalescence in polymeric materials, Int. J. Solids Struct, vol.44, pp.1787-1808, 2007.

F. Smidt, Dislocation channeling in irradiated metals, Tech. rep, 1970.

M. Wechsler, Dislocation channeling in irradiated and quenched metals, 1972.

F. A. Garner, Radiation damage in austenitic steels, Comprehensive Nu-945 clear Materials, vol.4, pp.33-95, 2012.

R. E. Stoller, Primary radiation damage formation, Comprehensive Nuclear Materials, pp.293-333, 2012.

C. Pokor, X. Averty, Y. Brechet, P. Dubuisson, and J. Massoud, Effect of irradiation defects on the work hardening behavior, Scripta Mat, vol.50, pp.950-597, 2004.

O. K. Chopra and A. S. Rao, A review of irradiation effects on LWR core internal materials IASCC susceptibility and crack growth rates of austenitic stainless steels, J. Nuc. Mat, vol.409, pp.235-256, 2011.

S. Zinkle and G. Was, Materials challenges in nuclear energy, Acta Mat, vol.61, pp.735-758, 2013.

K. Farrell, T. Byun, and N. Hashimoto, Deformation mode maps for tensile deformation of neutron-irradiated structural alloys, J. Nuc. Mat, vol.335, pp.471-486, 2004.

T. Byun, N. Hashimoto, and K. Farrell, Deformation mode map of irradiated 960 316 stainless steel in true stress-dose space, J. Nuc. Mat, vol.351, pp.303-315, 2006.

N. Hashimoto, T. Byun, and K. Farrell, Microstructural analysis of deformation in neutron-irradiated fcc materials, J. Nuc. Mat, vol.351, pp.295-302, 2006.

T. Byun and N. Hashimoto, Strain localization in irradiated materials

. Eng and . Tech, , vol.38, pp.619-638, 2006.

T. Byun, N. Hashimoto, K. Farrell, and E. Lee, Characteristics of microscopic strain localization in irradiated 316 stainless steels and pure vanadium, J. Nuc. Mat, vol.349, pp.251-264, 2006.

M. Mcmurtrey, B. Cui, I. Robertson, D. Farkas, and G. Was, Mechanism 970 of dislocation channel-induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel, Cur. Op. Solid State Mat. Sci, vol.19, pp.305-314, 2015.

M. Bapna, T. Mori, and M. Meshii, The observation of slip channels in quenched gold, Phil. Mag, vol.17, pp.177-184, 1967.

T. Mori and M. Meshii, Plastic deformation of quench-hardened aluminum single crystals, Acta Metallurgica, vol.17, issue.2, pp.167-175, 1969.

A. Luft, J. Richter, K. Schlaubitz, C. Loose, and C. Mhlhaus, Work softening and microstructural instability of predeformed molybdenum single crystals, Materials Science and Engineering, vol.20, pp.113-122, 1975.

Z. Jiao, J. Busby, and G. Was, Deformation microstructure of protonirradiated stainless steels, J. Nuc. Mat, vol.361, pp.218-227, 2007.

M. Gussev, K. Field, and J. Busby, Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels, J. Nuc. Mat, vol.460, pp.139-152, 2015.

M. Gaume, Etude des mécanismes de déformation des alliages de zirconium après et sous irradiation, 2017.

S. Mahajan and B. Eyre, Formation of dislocation channels in neutron irradiated molybdenum, Acta Mat, vol.122, pp.259-265, 2017.

P. Doyle, K. Benensky, and S. Zinkle, Modeling of dislocation channel width evolution in irradiated metals, J. Nuc. Mat, vol.499, pp.47-64, 2018.

Y. Cui, G. Po, and N. Ghoniem, A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials, Int. J. Plasticity, vol.104, pp.54-67, 2018.

Y. Cui, G. Po, and N. Ghoniem, Suppression of localized plastic flow in irradiated materials, Scripta Mat, vol.154, pp.34-39, 2018.

K. Gururaj, C. Robertson, and M. Fivel, Channel formation and multiplication in irradiated FCC metals : a 3D dislocation dynamics investigation, Phil. Mag, vol.95, pp.1368-1389, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216766

W. Mills, Fracture toughness of irradiated stainless steel alloys, Nuclear technology, vol.82, pp.290-303, 1988.

O. Chopra and A. Rao, A review of irradiation effects on LWR core internal materials-Neutron embrittlement, J. Nuc. Mat, vol.412, pp.195-208, 2011.

E. Lee, T. Byun, J. Hunn, K. Farrell, and L. Mansur, Origin of hardening and 1005 deformation mechanisms in irradiated 316 ln austenitic stainless steel, J. Nuc. Mat, vol.296, pp.183-191, 2001.

D. Damcott, J. Cookson, V. Rotberg, and G. Was, A radiation effects facility using a 1.7 MV tandem accelerator, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1010, pp.780-783, 1995.

G. Was, J. Busby, T. Allen, E. Kenik, A. Jensson et al., Emulation of neutron irradiation effects with protons: validation of principle, J. Nuc. Mat, vol.300, pp.198-216, 2002.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.268, pp.1818-1823, 2010.

R. Stoller, M. Toloczko, G. Was, A. Certain, S. Dwaraknath et al., , p.1020

, On the use of SRIM for computing radiation damage exposure, Nuclear Instruments and Methods in Physics Reserch B, vol.310, pp.75-80, 2013.

. Astm-e521, Standard practice for neutron radiation damage simulation by charged-particle irradiation

A. Weck and D. Wilkinson, Experimental investigation of void coalescence 1025 in metallic sheets containg laser drilled holes, Acta Mat, vol.56, pp.1774-1784, 2008.

M. J. Nemcko, J. Li, and D. S. Wilkinson, Effects of void band orientation and crystallographic anisotropy on void growth and coalescence, J. Mech. Phys. Solids, vol.95, pp.270-283, 2016.

F. Di-gioacchino and J. Q. Da-fonseca, Plastic strain mapping with submicron resolution using digital image correlation, Exp. Mech, vol.53, pp.743-754, 2013.

R. Seghir, J. Witz, and S. Coudert, Digital image correlation 2D/3D software

A. Cea and . Fftp,

L. Méric and G. Cailletaud, Single crystal modeling for structural calculations

, Ppart 2 Finite element implementation, J. Eng. Mater. Technol, vol.113, pp.171-182, 1991.

J. Hure, S. E. Shawish, L. Cizelj, and B. Tanguy, Intergranular stress distri-1040 butions in polycrystalline aggregates of irradiated stainless steel, J. Nuc. Mat, vol.476, pp.231-242, 2016.

X. Han, Modélisation de la fragilisation due au gonflement dans les aciers inoxydables austénitiques irradiés

N. Barton, J. Arsenlis, and A. Marian, A polycrystal plasticity model of strain localization in irradiated iron, J. Mech. Phys. Solids, vol.61, pp.341-351, 2013.

S. De, Multiscale modeling of irradiated polycrystalline FCC metals, Int. J. Solids and Structures, vol.51, pp.3919-3930, 2014.

A. Gross and K. Ravi-chandar, On the deformation and failure of al 6061-T6 in plane strain tension evaluated through in situ microscopy, Int. J. Frac, vol.208, pp.27-52, 2017.

G. Potirniche, J. Hearndon, M. Horstemeyer, and X. Ling, Lattice orientation effects on void growth and coalescence in FCC single crystals, Int. J. 1055 Plasticity, vol.22, pp.921-942, 2006.

W. Liu, X. Zhang, J. Tang, and Y. Du, Simulation of void growth and coalescence behavior with 3D crystal plasticity theory, Computational Materials Science, vol.40, pp.130-139, 2007.

C. Ling, J. Besson, S. Forest, B. Tanguy, F. Latourte et al., An elas-1060 toviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations, Int. J. Plasticity, vol.84, pp.58-87, 2016.

P. Barrioz, J. Hure, and B. Tanguy, Void growth and coalescence in irradiated copper under deformation, J. Nuc. Mat, vol.502, pp.123-131, 2018.

C. Inglis, Stresses in plates due to the presence of cracks and sharp cor-1065

, Transactions of the Institute of Naval Architects, vol.55, pp.219-241, 1913.

P. Noell, J. Caroll, K. Hattar, B. Clark, and B. Boyce, Do voids nucleate at grain boundaries during ductile rupture, Acta Mat, vol.137, pp.103-114, 2017.

J. Gupta, J. Hure, B. Tanguy, L. Laffont, M. Lafont et al., Characterization of ion irradiation effects on the microstructure, hardness, de-1070 foramtion and crack initiation behavior of austenitic stainless steel; Heavy ions vs. protons, J. Nuc. Mat, vol.501, pp.45-58, 2018.

H. Moulinec and P. Suquet, A numerical method for computing the overall responnse of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, pp.69-94, 1998.

T. Helfer, B. Michel, J. Proix, M. Salvo, J. Sercombe et al., Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the pleiades fuel element modelling platform, Computers & Mathematics with Applications, vol.70, pp.994-1023, 2015.