P. Mondal, S. P. Shah, and L. D. Marks, Nanomechanical Properties of Interfacial Transition Zone in 2 Concrete, pp.315-320, 2009.

W. Zhu and P. J. Bartos, Application of depth-sensing microindentation testing to study of 5 interfacial transition zone in reinforced concrete, Cem. Concr. Res, vol.30, issue.6, pp.1299-1304, 2000.

G. Constantinides and F. Ulm, The effect of two types of C-S-H on the elasticity of cement-based 8 materials: Results from nanoindentation and micromechanical modeling, Cem. Concr. Res, vol.34, issue.9, pp.67-80, 2004.

J. Han, G. Pan, W. Sun, C. Wang, and D. Cui, Application of nanoindentation to investigate 11 chemomechanical properties change of cement paste in the carbonation reaction, Sci. China 12 Technol. Sci, vol.55, pp.616-622, 2012.

J. Frech-baronet, L. Sorelli, and J. Charron, New evidences on the effect of the internal relative 14 humidity on the creep and relaxation behaviour of a cement paste by micro-indentation 15 techniques, Cem. Concr. Res, vol.91, pp.39-51, 2017.

C. Pichler and R. Lackner, Identification of Logarithmic-Type Creep of Calcium-Silicate-Hydrates by 17 Means of Nanoindentation, Strain, vol.45, pp.17-25, 2009.

M. Vandamme and F. Ulm, Nanoindentation investigation of creep properties of calcium silicate 19 hydrates, Cem. Concr. Res, vol.52, pp.38-52, 2013.

Q. Zhang, R. L. Roy, M. Vandamme, and B. Zuber, Long-term creep properties of cementitious 21 materials: Comparing microindentation testing with macroscopic uniaxial compressive testing, p.22

, Cem. Concr. Res, vol.58, pp.89-98, 2014.

G. Constantinides, F. Ulm, and K. V. Vliet, On the use of nanoindentation for cementitious materials, p.24

. Mater and . Struct, , vol.36, pp.191-196, 2003.

J. J. Hughes and P. Trtik, Micro-mechanical properties of cement paste measured by depth-sensing 26 nanoindentation: a preliminary correlation of physical properties with phase type, p.27

. Charact, , vol.53, pp.223-231, 2004.

P. Mondal, S. P. Shah, and L. Marks, A reliable technique to determine the local mechanical properties 29 at the nanoscale for cementitious materials, Cem. Concr. Res, vol.37, pp.1440-1444, 2007.

K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino, Determination by nanoindentation 32 of elastic modulus and hardness of pure constituents of Portland cement clinker

, Res, vol.31, pp.555-561, 2001.

Y. Wei, S. Liang, and X. Gao, Phase quantification in cementitious materials by dynamic modulus 35 mapping, Mater. Charact, vol.127, pp.348-356, 2017.

O. Bernard, F. Ulm, and E. Lemarchand, A multiscale micromechanics-hydration model for the 37 early-age elastic properties of cement-based materials, Cem. Concr. Res, vol.33, pp.1293-1309, 2003.

G. Constantinides, K. S. Ravi-chandran, F. Ulm, and K. J. Van-vliet, Grid indentation analysis of 40 composite microstructure and mechanics: Principles and validation, Mater. Sci. Eng. A, vol.430, pp.189-202, 2006.

F. Ulm, M. Vandamme, C. Bobko, J. Ortega, K. Tai et al., Statistical Indentation 43 Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale, J. Am. Ceram. Soc, vol.90, pp.2677-2692, 2007.

J. J. Chen, L. Sorelli, M. Vandamme, F. Ulm, G. Chanvillard et al., A Coupled Nanoindentation/SEM-46 EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for

. Nanocomposites, J. Am. Ceram. Soc, vol.93, pp.1484-1493, 2010.

K. J. Krakowiak, W. Wilson, S. James, S. Musso, and F. Ulm, Inference of the phase-to-mechanical 1 property link via coupled X-ray spectrometry and indentation analysis: Application to cement-2 based materials, Cem. Concr. Res, vol.67, pp.271-285, 2015.

W. Wilson, L. Sorelli, and A. Tagnit-hamou, Automated coupling of NanoIndentation and Quantitative 4 Energy-Dispersive Spectroscopy (NI-QEDS): A comprehensive method to disclose the micro-5 chemo-mechanical properties of cement pastes, Cem. Concr. Res, vol.103, issue.6, pp.49-65, 2018.

P. Trtik, B. Münch, and P. Lura, A critical examination of statistical nanoindentation on model 8 materials and hardened cement pastes based on virtual experiments, Cem. Concr. Compos, vol.31, issue.9, pp.705-714, 2009.

F. Ulm, M. Vandamme, H. M. Jennings, J. Vanzo, M. Bentivegna et al., , p.11

C. P. Constantinides, K. J. Bobko, and . Van-vliet, Does microstructure matter for statistical 12 nanoindentation techniques?, Cem. Concr. Compos, vol.32, pp.92-99, 2010.

P. Lura, P. Trtik, and B. Münch, Validity of recent approaches for statistical nanoindentation of cement 15 pastes, Cem. Concr. Compos, vol.33, pp.457-465, 2011.

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus 17 using load and displacement sensing indentation experiments, J. Mater. Res, vol.7, pp.1564-1582, 1992.

I. N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq 20 problem for a punch of arbitrary profile, Int. J. Eng. Sci, vol.3, issue.65, pp.90019-90023, 1965.

A. J. Bushby, Nano-Indentation Using Spherical Indenters, Nondestruct. Test. Eval, vol.17, pp.213-236, 2001.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM 25

. Algorithm, , 1976.

N. X. Randall, M. Vandamme, and F. Ulm, Nanoindentation analysis as a two-dimensional tool for 27 mapping the mechanical properties of complex surfaces, J. Mater. Res, vol.24, pp.679-690, 2009.

C. Hu, Y. Han, Y. Gao, Y. Zhang, and Z. Li, Property investigation of calcium-silicate-hydrate (C-S-H) 30 gel in cementitious composites, Mater. Charact, vol.95, pp.129-139, 2014.

C. Hu and Z. Li, A review on the mechanical properties of cement-based materials measured by 33 nanoindentation, Constr. Build. Mater, vol.90, 2015.

M. Moevus, N. Godin, M. R'mili, D. Rouby, P. Reynaud et al., Analysis of damage 36 mechanisms and associated acoustic emission in two SiC$_f/$[Si-B-C] composites exhibiting 37 different tensile behaviours. Part II: Unsupervised acoustic emission data clustering, Compos. Sci. 38 Technol, vol.68, pp.1258-1265, 2008.

A. K. Jain, M. N. Murty, and P. J. Flynn, Data Clustering: A Review, ACM Comput Surv, vol.31, p.323, 1999.

J. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc, vol.58, pp.42-236, 1963.

D. L. Davies and D. W. Bouldin, A Cluster Separation Measure, IEEE Trans. Pattern Anal. Mach. Intell, vol.44, issue.1, pp.224-227, 1979.

A. Aili, Shrinkage and creep of cement-based materials under multiaxial load : poromechanical 46 modeling for application in nuclear industry, February, vol.13, 2017.

N. Ukrainczyk, E. A. Koenders, and K. Van-breugel, Representative Volumes for Numerical Modeling 49 of Mass Transport in Hydrating Cement Paste, Multi-Scale Model, p.50

D. Springer, , pp.173-184, 2013.

M. H. Yio, H. S. Wong, and N. R. Buenfeld, Representative elementary volume (REV) of cementitious 1 materials from three-dimensional pore structure analysis, Cem. Concr. Res, vol.102, issue.2, pp.187-202, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al.,

R. Prettenhofer, V. Weiss, J. Dubourg, A. Vanderplas, D. Passos et al.,

É. Perrot and . Duchesnay, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905