Irradiation-based design of mechanically resistant microstructures tuned viamultiscale phase-field modeling - Archive ouverte HAL Access content directly
Journal Articles Scientific Reports Year : 2018

Irradiation-based design of mechanically resistant microstructures tuned viamultiscale phase-field modeling

(1) , (2) , (3, 4) , (5, 4) , (5, 6)
1
2
3
4
5
6

Abstract

We present a multi-scale phase field modeling of stationary microstructures produced under 1MeV krypton ion irradiation in a phase separating concentrated solid solution of silver and copper.We show that the mixture reaches ultimately a stationary micro-structural state made of phasedomains with composition and size distribution mapped to the values of the incident ux of particlesand of the temperature, variables that help designing a non equilibrium phase-diagram for theirradiated alloy. The modeling predicts the formation of diverse microstructures likely connected tospinodal hardening, thus opening the perspective of the on-purpose tuning of mechanically resistantmicrostructures and the preparation of metastable alloys with mechanical properties improved bycomparison to counterparts obtained via classical thermo-mechanical treatments.
Fichier principal
Vignette du fichier
201800002437.pdf (1.26 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-02339614 , version 1 (04-11-2019)

Identifiers

Cite

Gilles Demange, S. Depinoy, L. Luneville, D. Simeone, V. Pontikis. Irradiation-based design of mechanically resistant microstructures tuned viamultiscale phase-field modeling. Scientific Reports, 2018, 8 (1), pp.10237. ⟨10.1038/s41598-018-28685-3⟩. ⟨cea-02339614⟩
160 View
54 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More