, Diffusion in Solid Metals and Alloys, vol.26, 1990.

A. D. Leclaire and A. B. Lidiard, Liii. correlation effects in diffusion in crystals, Journal of Theoretical Experimental and Applied Physics, vol.1, issue.6, pp.518-527, 1956.

A. R. Allnatt and A. B. Lidiard, Atomic Transport in Solids, 1993.

R. M. Martin, Electronic Structure, Basic Theory and Practical Methods, 2004.

E. Meslin, C. C. Fu, and A. Barbu, Phys. Rev. B, vol.75, p.94303, 2007.


L. Messina, M. Nastar, N. Sandberg, and P. Olsson, Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron, Phys. Rev. B, vol.93, p.184302, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02382828

G. T. Barkema and N. Mousseau, Event-based relaxation of continuous disordered systems, Phys. Rev. Lett, vol.77, pp.4358-4361, 1996.

R. Kikuchi, J. Phys. Chem. Solids, vol.20, p.17, 1961.

R. Kikuchi and H. Sato, J. Chem. Phys, vol.53, p.2702, 1970.



M. Nastar and V. Barbe, Faraday Discussions, vol.134, p.331, 2007.

V. Barbe and M. Nastar, Phys. Rev. B, vol.76, p.54206, 2007.


Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. Tomán, B. Gajdics et al., Stochastic kinetic mean field model, Computer Physics Communications, vol.204, pp.31-37, 2016.

V. G. Vaks, K. Y. Khromov, I. R. Pankratov, and V. V. Popov, Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys fecu, femn, feni, and fecr, Journal of Experimental and Theoretical Physics, vol.123, issue.1, pp.59-85, 2016.

V. Barbe, M. Nastar, and P. Mag, , vol.86, p.1513, 2006.


J. Bocquet, Exact value of the correlation factor for the divacancy mechanism in fcc crystals: the end of a long quest, Philosophical Magazine, vol.95, issue.4, pp.394-423, 2015.

G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci, vol.324, issue.94, pp.731-735, 1995.

H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, Classical and quantum dynamics in condensed phase simulations, p.35, 1998.

G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys, vol.113, pp.9901-9904, 2000.


M. Mantina, Y. Wang, L. Chen, Z. Liu, and C. Wolverton, First principles impurity diffusion coefficients, Acta Materialia, vol.57, issue.14, pp.4102-4108, 2009.

S. Choudhury, L. Barnard, J. Tucker, T. Allen, B. Wirth et al., Ab-initio based modeling of diffusion in dilute bcc fe-ni and fe-cr alloys and implications for radiation induced segregation, Journal of Nuclear Materials, vol.411, issue.1, pp.1-14, 2011.

H. Wu, A. Lorenson, B. Anderson, L. Witteman, H. Wu et al., Robust fcc solute diffusion predictions from ab-initio machine learning methods, Computational Materials Science, vol.134, pp.160-165, 2017.

R. Agarwal and D. R. Trinkle, Ab initio magnesiumsolute transport database using exact diffusion theory, Acta Mater, vol.150, pp.339-350, 2018.

A. Claisse, T. Schuler, D. A. Lopes, and P. Olsson, Transport properties in dilute UN(x) solid solutions (x = Xe, Kr), Phys. Rev. B, vol.94, p.174302, 2016.

T. Schuler, D. A. Lopes, A. Claisse, and P. Olsson, Transport properties of c and o in un fuels, Phys. Rev. B, vol.95, p.94117, 2017.

X. Liu, W. Windl, K. M. Beardmore, and M. P. Masquelier, First-principles study of phosphorus diffusion in silicon: Interstitial-and vacancy-mediated diffusion mechanisms, Applied Physics Letters, vol.82, issue.12, pp.1839-1841, 2003.

D. Caliste, P. Pochet, T. Deutsch, and F. Lançon, Germanium diffusion mechanisms in silicon from first principles, Phys. Rev. B, vol.75, p.125203, 2007.

F. Bruneval, Range-separated approach to the rpa correlation applied to the van der waals bond and to diffusion of defects, Phys. Rev. Lett, vol.108, p.256403, 2012.

Y. Yoshida and G. Langouche, Defects and Impurities in Silicon Materials: An Introduction to Atomic-Level Silicon Engineering, 2016.

K. Kobayashi, S. Yamaoka, K. Sueoka, and J. Vanhellemont, Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals -theoretical study of formation energy and formation entropy in area of influence of dopant atoms, the 8th International Workshop on Modeling in Crystal Growth, vol.474, pp.110-120, 2017.

L. Onsager, Phys. Rev, vol.37, p.405, 1931.


M. Nastar and F. Soisson, Comprehensive Nuclear Materials, vol.5, 2013.

A. J. Ardell and P. Bellon, Radiation-induced solute segregation in metallic alloys, Current Opinion in Solid State and Materials Science, vol.20, issue.3, pp.115-139, 2016.

T. R. Anthony, Diffusion in solids, 1975.

M. Zehetbauer, G. Steiner, E. Schafler, A. V. Korznikov, and E. Korznikova, Deformation induced vacancies with severe plastic deformation: Measurements and modelling, Nanomaterials by Severe Plastic Deformation, vol.503, pp.57-64, 2006.

A. Barbu, Acta Met, vol.28, p.499, 1980.

J. Bocquet, Phil. Mag. A, vol.63, p.157, 1991.


V. Barbe and M. Nastar, Phil. Mag, vol.87, p.1649, 2006.


T. Garnier, M. Nastar, P. Bellon, and D. R. Trinkle, Solute drag by vacancies in body-centered cubic alloys, Phys. Rev. B, vol.88, p.134201, 2013.

T. Garnier, D. R. Trinkle, M. Nastar, and P. Bellon, Quantitative modeling of solute drag by vacancies in face-centered-cubic alloys, Phys. Rev. B, vol.89, p.144202, 2014.

L. Messina, M. Nastar, N. Sandberg, and P. Olsson, Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron, Phys. Rev. B, vol.93, p.184302, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02382828

T. Schuler and M. Nastar, Transport properties of dilute ??Fe(x) solid solutions (x = c, n, o), Phys. Rev. B, vol.93, p.224101, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02388678

T. Schuler, D. R. Trinkle, P. Bellon, and R. , Averback, Design principles for radiation-resistant solid solutions, Phys. Rev. B, vol.95, p.174102, 2017.

R. Agarwal and D. R. Trinkle, Exact model of vacancy-mediated solute transport in magnesium, Phys. Rev. Lett, vol.118, p.105901, 2017.

J. Bocquet, Correlation factor for diffusion in cubic crystals with solute-vacancy interactions of arbitrary range, Philosophical Magazine, vol.94, issue.31, pp.3603-3631, 2014.

D. R. Trinkle, Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach, Philosophical Magazine, vol.97, issue.28, pp.2514-2563, 2017.

D. R. Trinkle, Diffusivity and derivatives for interstitial solutes: activation energy, volume, and elastodiffusion tensors, Philosophical Magazine, vol.96, issue.26, pp.2714-2735, 2016.

C. Kipnis, Scaling Limits of Interacting Particle Systems, 1999.

H. Spohn, Large Scale Dynamics of Interacting Particles, 1991.

C. Arita, P. L. Krapivsky, and K. Mallick, Bulk diffusion in a kinetically constrained lattice gas, Journal of Physics A: Mathematical and Theoretical, vol.51, issue.12, p.125002, 2018.

M. Nastar, V. Y. Dobretsov, and G. Martin, Phil. Mag. A, vol.80, p.155, 2000.


M. Nastar, Atomic diffusion theory challenging the cahn-hilliard method, Phys. Rev. B, vol.90, p.144101, 2014.

M. Nastar, Philos. Mag, vol.85, pp.3767-3794, 2005.


T. Garnier, V. R. Manga, D. R. Trinkle, M. Nastar, and P. Bellon, Stress-induced anisotropic diffusion in alloys: Complex si solute flow near a dislocation core in ni, Phys. Rev. B, vol.88, p.134108, 2013.

C. C. Fu and F. Willaime, Phys. Rev. B, vol.72, p.64117, 2005.


J. Bocquet, C. Barouh, and C. Fu, Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron, Phys. Rev. B, vol.95, issue.21, p.214108, 2017.

T. Schuler and M. Nastar, On cluster transport coefficients and the local equilibrium hypothesis

L. Onsager, Phys. Rev, vol.38, p.2265, 1931.


A. R. Allnatt, Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids, Journal of Physics C: Solid State Physics, vol.15, issue.27, pp.5605-5613, 1982.

A. Vattré, T. Jourdan, H. Ding, M. Marinica, and M. J. Demkowicz, Non-random walk diffusion enhances the sink strength of semicoherent interfaces, Nat Comms, vol.7, p.10424, 2016.

L. Messina, M. Chiapetto, P. Olsson, C. S. Becquart, and L. Malerba, An object kinetic monte carlo model for the microstructure evolution of neutronirradiated reactor pressure vessel steels, physica status solidi a, vol.213, pp.2974-2980, 2016.

Z. Yang, S. Blondel, K. D. Hammond, and B. D. Wirth, Kinetic monte carlo simulations of helium cluster nucleation in tungsten with preexisting vacancies, FUSION SCIENCE AND TECHNOLOGY, vol.71, issue.1, pp.60-74, 2017.

N. Castin, G. Bonny, A. Bakaev, C. J. Ortiz, A. E. Sand et al., Object kinetic monte carlo model for neutron and ion irradiation in tungsten: Impact of transmutation and carbon impurities, JOURNAL OF NUCLEAR MATERIALS, vol.500, pp.15-25, 2018.

M. Chiapetto, L. Malerba, and C. S. Becquart, Nanostructure evolution under irradiation in femnni alloys: A "grey alloy" object kinetic monte carlo model, JOURNAL OF NUCLEAR MATERIALS, vol.462, pp.91-99, 2015.

A. Backer, G. Adjanor, C. Domain, M. L. Lescoat, S. Jublot-leclerc et al., Modeling of helium bubble nucleation and growth in austenitic stainless steels using an object kinetic monte carlo method, NUCLEAR INSTRU-MENTS & METHODS IN PHYSICS RESEARCH SEC-TION B-BEAM INTERACTIONS WITH, MATERIALS AND ATOMS, vol.352, pp.107-114, 2015.

H. Xu, Y. N. Osetsky, and R. E. Stoller, Cascade annealing simulations of bcc iron using object kinetic monte carlo, JOURNAL OF NUCLEAR MATERIALS, vol.423, issue.1-3, pp.102-109, 2012.

T. Jourdan, G. Bencteux, and G. Adjanor, Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach, Journal of Nuclear Materials, vol.444, issue.1-3, pp.298-313, 2014.

R. E. Stoller, S. I. Golubov, C. Domain, and C. S. Becquart, Mean field rate theory and object kinetic monte carlo: A comparison of kinetic models, JOURNAL OF NU-CLEAR MATERIALS, vol.382, issue.2-3, pp.77-90, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01828292

F. Soisson and T. Jourdan, Radiation-accelerated precipitation in fe-cr alloys, ACTA MATERIALIA, vol.103, pp.870-881, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02382838

E. Clouet and . Handbook, 22A Fundamentals of Modeling for Metals Processing, pp.203-219, 2009.

A. Badillo, P. Bellon, and R. S. Averback, A phase field model for segregation and precipitation induced by irradiation in alloys, Modelling Simul. Mater. Sci. Eng, vol.23, issue.3, p.35008, 2015.

J. Piochaud, M. Nastar, F. Soisson, L. Thuinet, and A. Legris, Atomic-based phase-field method for the modeling of radiation induced segregation in fe-cr, Computational Materials Science, vol.122, pp.249-262, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02389670

L. Thuinet, M. Nastar, E. Martinez, G. B. Moladje, A. Legris et al., Multiscale modeling of radiation induced segregation in iron based alloys, Computational Materials Science, vol.149, pp.324-335, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02339775

L. Messina, Multiscale modeling of atomic transport phenomena in ferritic steels, 2015.

G. Nandipati, N. Govind, A. Andersen, and A. Rohatgi, Selflearning kinetic monte carlo simulations of al diffusion in mg, Journal of Physics: Condensed Matter, vol.28, issue.15, p.155001, 2016.

C. Varvenne, F. Bruneval, M. Marinica, and E. Clouet, Point defect modeling in materials: Coupling ab initio and elasticity approaches, Phys. Rev. B, vol.88, issue.13, p.134102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875386

T. Schuler, L. Messina, M. Nastar, and K. Repository,

C. Barouh, T. Schuler, C. Fu, and T. Jourdan, Physical Review B, vol.92, issue.10


A. Van-der-ven and G. Ceder, First principles calculation of the interdiffusion coefficient in binary alloys, Physical Review Letters, vol.94, issue.4, p.45901, 2005.

J. Bocquet, Phil. Mag. A, vol.47, pp.547-577, 1983.


P. Benoist, J. Bocquet, and P. Lafore, La correlation entre sauts atomiques: Une nouvelle methode de calcul, Acta Metallurgica, vol.25, issue.3, pp.265-275, 1977.

J. R. Manning, Phys. Rev. B, vol.136, pp.1758-1766, 1964.


K. Compaan and Y. Haven, Correlation factors for diffusion in solids, Transactions of the Faraday Society, vol.52, pp.786-801, 1956.

R. Chen and S. T. Dunham, Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach, Phys. Rev. B, vol.83, p.134124, 2011.

S. Ishioka and M. Koiwa, Philos. Mag. A, vol.37, pp.517-533, 1978.


M. Koiwa and S. Ishioka, Philos. Mag. A, vol.47, pp.927-938, 1983.


K. Compaan and Y. Haven, Correlation factors for diffusion in solids. part 2.-indirect interstitial mechanism, Trans. Faraday Soc, vol.54, pp.1498-1508, 1958.

R. Siegel, Point defects and defect interactions in metals, Proc. of Yamada Conf, p.533, 1982.

W. Chan, R. S. Averback, and Y. Ashkenazy, Anisotropic diffusion of point defects in metals under a biaxial stress field simulation and theory, Journal of Applied Physics, vol.104, issue.2, p.23502, 2008.

B. Ziebarth, M. Mrovec, C. Elsässer, and P. Gumbsch, Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon, Phys. Rev. B, vol.92, p.115309, 2015.

Z. Li and D. R. Trinkle, Kinetic monte carlo investigation of tetragonal strain on onsager matrices, Phys. Rev. E, vol.93, p.53305, 2016.

T. Garnier, V. R. Manga, P. Bellon, and D. R. Trinkle, Diffusion of si impurities in ni under stress: A firstprinciples study, Phys. Rev. B, vol.90, p.24306, 2014.

T. Garnier, Z. Li, P. Bellon, and D. R. Trinkle, Calculation of strain effects on vacancy-mediated diffusion of impurities in fcc structures: General approach and application to ni1-xsix, Phys. Rev. B, vol.90, issue.18, p.184301, 2014.