A. Alamo, V. Lambard, X. Averty, and M. H. Mathon, Assessment of ODS-14%Cr ferritic alloy for high temperature applications, Journal of Nuclear Materials, pp.333-337, 2004.

I. Kim, J. D. Hunn, N. Hashimoto, D. L. Larson, P. J. Maziasz et al., Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection, Journal of Nuclear Materials, vol.280, pp.264-274, 2000.

R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer, Oxide dispersionstrengthened steels: A comparison of some commercial and experimental alloys, Journal of Nuclear Materials, vol.341, pp.103-114, 2005.

S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura et al., Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, Journal of Nuclear Materials, vol.204, issue.93, p.90200, 1993.

S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara et al., Development of Oxide Dispersion Strengthened Ferritic Steels for FBR Core Application, (I), Journal of Nuclear Science and Technology, vol.34, pp.256-263, 1997.

M. Ratti, Développement de nouvelles nuances d'aciers ferritiques-martensitiques pour le gainage d'éléments combustibles des réacteurs à neutrons rapides au sodium, CEA Saclay, Direction des systèmes d'information, 2010.

P. Yvon and F. Carre, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, vol.385, pp.217-222, 2009.

L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud et al., Assessment of a new fabrication route for Fe-9Cr-1W {ODS} cladding tubes, Journal of Nuclear Materials, vol.428, pp.47-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00679120

P. Dubuisson, Y. De-carlan, V. Garat, and M. Blat, {ODS} Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding, Journal of Nuclear Materials, vol.428, pp.6-12, 2012.

S. Ukai and M. Fujiwara, Perspective of ODS alloys application in nuclear environments, Journal of Nuclear Materials, pp.1043-1050, 2002.

S. Ukai, S. Ohtsuka, T. Kaito, Y. De-carlan, J. Ribis et al., 10 -Oxide dispersionstrengthened/ferrite-martensite steels as core materials for Generation {IV} nuclear reactors, Structural Materials for Generation {IV} Nuclear Reactors, pp.357-414, 2017.

N. Sallez, Recrystallization, abnormal grain growth and ultrafine microstructure of ODS ferritic steels, Theses, Université Grenoble Alpes, 2014.

Y. Li, J. Shen, F. Li, H. Yang, S. Kano et al., Effects of fabrication processing on the microstructure and mechanical properties of oxide dispersion strengthening steels, Materials Science and Engineering: A, vol.654, pp.203-212, 2016.

S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake, Development of Oxide Dispersion Strengthened Steels for FBR Core Application, (II), Journal of Nuclear Science and Technology, vol.35, pp.294-300, 1998.

S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura et al., Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel, Journal of Nuclear Materials, vol.204, issue.93, pp.90201-90210, 1993.

B. Michel, J. Sercombe, and G. Thouvenin, A new phenomenological criterion for pelletcladding interaction rupture, Nuclear Engineering and Design, vol.238, pp.1612-1628, 2008.

T. Tanno, M. Takeuchi, S. Ohtsuka, and T. Kaito, Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions, Journal of Nuclear Materials, vol.494, pp.219-226, 2017.

A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C. H. Zhang et al., Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems, Journal of Nuclear Materials, vol.417, pp.176-179, 2011.

H. S. Cho, A. Kimura, S. Ukai, and M. Fujiwara, Corrosion properties of oxide dispersion strengthened steels in super-critical water environment, Journal of Nuclear Materials, pp.387-391, 2004.

S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta et al., Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings, Journal of Nuclear Science and Technology, vol.39, pp.872-879, 2002.

L. Toualbi, C. Cayron, P. Olier, R. Loge, and Y. De-carlan, Relationships between mechanical behavior and microstructural evolutions in Fe 9Cr-ODS during the fabrication route of {SFR} cladding tubes, Journal of Nuclear Materials, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00828263

T. M. Link, D. A. Koss, and A. T. Motta, Failure of Zircaloy cladding under transverse planestrain deformation, Nuclear Engineering and Design, vol.186, pp.379-394, 1998.

R. S. Daum, S. Majumdar, H. Tsai, T. S. Bray, D. A. Koss et al., Mechanical Property Testing of Irradiated Zircaloy Cladding Under Reactor Transient Conditions, ASTM STP 1418, 2002.

F. Onimus, M. Bono, J. Garnier, A. Soniak-defresne, R. Limon et al., Strain-Path Change Tests and Physically Based Polycrystalline Modeling of the Behavior of Recrystallized Zirconium Alloys, pp.180-213, 2018.

M. Praud, Plasticité d'alliages renforcés par nano-précipitation, 2012.

H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika et al., Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, Journal of Nuclear Materials, vol.384, pp.115-118, 2009.

M. Brocq, B. Radiguet, S. Poissonnet, F. Cuvilly, P. Pareige et al., Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing, Journal of Nuclear Materials, vol.409, pp.80-85, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02176567

M. Ratti, D. Leuvrey, M. H. Mathon, and Y. De-carlan, Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials, Journal of Nuclear Materials, pp.540-543, 2009.

M. J. Alinger, G. R. Odette, and D. T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys, Acta Materialia, vol.57, pp.392-406, 2009.

A. Steckmeyer, Experimental study and modelling of the high temperature mechanical behaviour of oxide dispersion strengthened ferritic steels, Theses, Ecole Nationale Supérieure des Mines de Paris, 2012.

R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer et al., Tensile and creep properties of an oxide dispersion-strengthened ferritic steel, Journal of Nuclear Materials, vol.1, pp.773-777, 2002.

T. Tanno, Y. Yano, H. Oka, S. Ohtsuka, T. Uwaba et al., Strength anisotropy of rolled 11Cr-ODS steel, Nuclear Materials and Energy, 2016.

B. Wilshire and T. D. Lieu, Deformation and damage processes during creep of Incoloy MA957, Materials Science and Engineering: A, vol.386, pp.81-90, 2004.

S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata et al., Hightemperature strength characterization of advanced 9Cr-ODS ferritic steels, Materials Science, pp.115-120, 2009.

H. Sakasegawa, S. Ukai, M. Tamura, S. Ohtsuka, H. Tanigawa et al., Creep constitutive equation of dual phase 9Cr-ODS steel, vol.373, pp.82-89, 2008.

J. Malaplate, F. Mompiou, J. Béchade, T. V. Berghe, and M. Ratti, Creep behavior of ODS materials: A study of dislocations/precipitates interactions, Journal of Nuclear Materials, vol.417, pp.205-208, 2011.

H. Salmon-legagneur, S. Vincent, J. Garnier, A. F. Gourgues-lorenzon, and E. Andrieu, Anisotropic intergranular damage development and fracture in a 14Cr ferritic ODS steel under high-temperature tension and creep, Materials Science and Engineering: A, vol.722, pp.231-241, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759149

A. Steckmeyer, V. H. Rodrigo, J. M. Gentzbittel, V. Rabeau, and B. Fournier, Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferritic steel, Journal of Nuclear Materials, vol.426, pp.182-188, 2012.

N. Hervé, Fluage d'aciers renforcés par dispersion nanométrique : caractérisation, modélisation et optimisation de la microstructure, 2016.

B. Fournier, A. Steckmeyer, A. Rouffie, J. Malaplate, J. Garnier et al., Mechanical behaviour of ferritic ODS steels -Temperature dependancy and anisotropy, Journal of Nuclear Materials, vol.430, pp.142-149, 2012.

M. Serrano, M. Hernandez-mayoral, and A. Garcia-junceda, Microstructural anisotropy effect on the mechanical properties of a 14Cr ODS steel, Journal of Nuclear Materials, vol.428, pp.103-109, 2012.

K. Turba, R. C. Hurst, and P. Hahner, Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique, Journal of Nuclear Materials, vol.428, pp.76-81, 2012.

E. Vanegas, K. Mocellin, and R. Loge, Identification of cyclic and anisotropic behaviour of ODS steels tubes, Procedia Engineering, vol.10, pp.1208-1213, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631010

H. Salmon, Caractérisation de l'endommagement à haute température d'aciers ferritiques renforcés par dispersion de nano-oxydes (ODS), 2017.

F. Nagase, T. Sugiyama, and T. Fuketa, Optimized Ring Tensile Test Method and Hydrogen Effect on Mechanical Properties of Zircaloy Cladding in Hoop Direction, Journal of Nuclear Science and Technology, vol.46, pp.545-552, 2009.

M. A. Martín-rengel, F. J. Sánchez, J. Ruiz-hervías, L. Caballero, and A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, Journal of Nuclear Materials, vol.429, pp.276-283, 2012.

S. Arsène and J. Bai, A New Approach to Measuring Transverse Properties of Structural Tubing by a Ring Test-Experimental Investigation, A New Approach to Measuring Transverse Properties of Structural Tubing by a Ring Test-Experimental Investigation, 1998.

C. P. Dick and Y. P. Korkolis, Mechanics and full-field deformation study of the Ring Hoop Tension Test, International Journal of Solids and Structures, vol.51, pp.3042-3057, 2014.

M. K. Samal, Investigation of failure behavior of thin-walled tubular components and development of a procedure for evaluation of their mechanical and fracture properties, pp.161-186, 2016.

H. Sakasegawa, S. Ohtsuka, S. Ukai, H. Tanigawa, M. Fujiwara et al., Microstructural evolution during creep of 9Cr-ODS steels, vol.81, pp.1013-1018, 2006.

T. Yoshitake, Y. Abe, N. Akasaka, S. Ohtsuka, S. Ukai et al., Ring-tensile properties of irradiated oxide dispersion strengthened ferritic/martensitic steel claddings, Journal of Nuclear Materials, pp.342-346, 2004.

S. Yamashita, Y. Yano, S. Ohtsuka, T. Yoshitake, T. Kaito et al., Irradiation Behavior Evaluation of Oxide Dispersion Strengthened Ferritic Steel Cladding Tubes Irradiated in {JOYO}, Journal of Nuclear Materials, 2013.

Y. Yano, R. Ogawa, S. Yamashita, S. Ohtsuka, T. Kaito et al., Effects of neutron irradiation on tensile properties of oxide dispersion strengthened (ODS) steel claddings, Journal of Nuclear Materials, vol.419, pp.305-309, 2011.

C. S. Seok, B. Marple, Y. J. Song, S. Gollapudi, I. Charit et al., High temperature deformation characteristics of Zirlo TM tubing via ring-creep and burst tests, vol.241, pp.599-602, 2011.

C. Zakine, C. Prioul, and D. François, Creep behaviour of ODS steels, vol.219, pp.102-108, 1996.

K. Shinozuka, M. Tamura, H. Esaka, K. Shiba, and K. Nakamura, Creep behavior of oxide dispersion strengthened 8Cr-2WVTa and 8Cr-1W steels, Journal of Nuclear Materials, vol.384, pp.1-5, 2009.

S. Ohtsuka, T. Kaito, T. Tanno, Y. Yano, S. Koyama et al., Microstructure and high-temperature strength of high Cr ODS tempered martensitic steels, Journal of Nuclear Materials, 2013.

T. Jayakumar, M. D. Mathew, and K. Laha, High Temperature Materials for Nuclear Fast Fission and Fusion Reactors and Advanced Fossil Power Plants, Procedia Engineering, vol.55, pp.259-270, 2013.

J. Séran and M. L. Flem, 8 -Irradiation-resistant austenitic steels as core materials for Generation {IV} nuclear reactors, Structural Materials for Generation {IV} Nuclear Reactors, pp.285-328, 2017.

M. Hamilton, D. S. Gelles, R. Lobsinger, G. Johnson, W. Brown et al., Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications, p.13168, 2001.