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Abstract  
 
In regions of complex topography, the local flows (i.e. at the sub-kilometer scale) are 
difficult to forecast on a routine basis because of the too coarse resolution of 
operational models. The worst performance is obtained for stable stratifications, 
which are yet the most problematic situations regarding the accumulation of 
pollutants. In the SE of France, the Cadarache site features such a complex 
topography. Furthermore, the region is also characterized by a high occurrence of 
clear skies often leading to stable boundary layers during nighttime periods. 
 
The Weather Research and Forecasting (WRF) model is run daily to forecast the 
weather in this region with a horizontal resolution of 3 km. These simulations cannot 
resolve all the details of the topography and particularly the narrow Cadarache valley, 
where local wind patterns are therefore not accessible. However, other variables, 
less dependent on the sub-grid topography, are satisfactorily forecasted and thus 
used as inputs in an artificial neural network (ANN) used to downscale wind patterns 
in the valley. 
 
Using the vertical gradient of temperature and the horizontal wind as ANN input 
parameters, this method allows improving the forecast of the low level wind (direction 
and speed) at one spot in the Cadarache valley. The training and qualification of the 
ANN is based on observations of the wind in the valley during an entire year. The 
Directional Accuracy (DACC), which represents the fraction of wind directions that do 
not depart from the observations by more than 45°, then jumps from 0.56 for WRF 
simulations to 0.75 for ANN output, and the Proportion Correct (PC), which 
represents the fraction of data that are well classified regarding different ranges of 
wind direction, increases from 0.53 for WRF to 0.74 for the ANN. 
 
This study demonstrates the potential of the ANN technique used as a downscaling 
tool to forecast weather conditions at the local scale when numerical modeling is 
done at a too coarse resolution to represent the effect of the local topography. 
 
 
 



1. Introduction 
Low level winds must be well described when studying the atmospheric dispersion. Stable conditions 
are among the most impacting because they trap the pollutants near the surface. Moreover, over 
complex topography, stable conditions can generate gravity/density flows along the slopes ( (Muñoz, 
et al., 2013); (Largeron, 2010); (Duine, 2017); (Simpson, 1994)), and cold pools ( (Burns, et al., 2014); 
(Lareau, et al., 2013); (Price, et al., 2011); (Clements, et al., 2003)), thereby modifying the 
atmospheric dispersion. By different ways, the topography can generate terrain-induced phenomena 
near the surface (Chow, et al., 2013) impacting the low level variables, and especially winds when 
channeling effects dominate downward momentum transport (Whiteman, et al., 1993).  
 
Several experiments have been conducted to study density driven, valley and slope flows and/or cold 
pooling, like e.g. the VTMX- (Doran et al. 2002), COLPEX- (Price, et al., 2011), METCRAX- (Whiteman et 
al. 2008), Materhorn- (Fernando et al., 2015) or ASCOT-campaign (Clements et al. 1989). In the recent 
past years, a steep alpine valley was documented during the Passy project (Paci and Staquet 2016), 
and the KASCADE (Katabatic winds and Stability over CAdarache for Dispersion of Effluents) 
experiment (Duine et al., 2017) has been conducted in winter 2013 in the Cadarache region (SE of 
France) which features a complex topography.  
 
In numerical weather predictions, the representation of these local phenomena depends on the 
representation of the topography which is itself related to the horizontal grid resolution and the 
associated modeling limitations. The choice of coarse resolutions is mostly determined by the 
computational cost that increases with resolution. Another limitation for the horizontal resolution is 
the range of validity of parametrizations such as the 1D turbulence schemes which do not allow 
resolutions finer than around one kilometer. For finer resolutions, the larger turbulent eddies 
become explicitly calculated. However, it is accepted that a large eddy simulation (LES) is satisfactory 
once at least 80% of the total kinetic energy is resolved (Pope, 2001). This introduces a threshold for 
the horizontal resolution. Thus, Wyngaard, (2004) introduced the “terra incognita” to define the 
range of horizontal resolutions (approximately 1 km to 100 m) for which it is possible neither to 
completely parameterize the turbulence nor to explicitly represent enough of the turbulence 
spectrum to run a proper LES. For these reasons, routine forecasting simulations generally use (at 
best) kilometric horizontal resolutions.  
 
In Cadarache, one of the sites of the "Commissariat à l’Énergie Atomique et aux Énergies 
Alternatives" (CEA, the French nuclear agency), routine forecasts are run using the WRF model 
(Skamarock, et al., 2008) at a 3 km horizontal resolution. Such coarse resolutions allow neither to 
represent the very complex topography of the Cadarache region, nor their associated local winds. 
However, for sanitary purposes, there is a need for operational forecasts of local winds on and 
around industrial sites, and more generally over any region with such a complex topography. 
 
To fill this gap in the operational forecasts, Duine et al., (2016) have developed a method to nowcast 
the occurrence of down-valley winds, occurring under stable conditions in a small valley at 
Cadarache, as they were observed during the KASCADE campaign (Duine et al., 2017). They found 
that, among the permanent measurements available, a vertical temperature difference is a good 
indicator of the presence of the down-valley wind. This method represents a first step of downscaling 
for the knowledge of a local wind, however, since it is based on observations, it is restricted to the 
nowcasting and cannot improve the forecast of these local winds. 
 



Another nowcasting tool frequently used in atmospheric studies is the Artificial Neural Network 
(ANN). Gardner and Dorling (1998) give an overview of the scope of their utilization in atmospheric 
studies. An ANN is a statistical tool which allows correlating some variables between each other, 
even being blind about the physical link between the variables. Its principle is to search the better 
relation between some variables (inputs, always available) to calculate an output that is the closest 
to an observation (target, temporarily available). Up to now, the common utilization of ANN has been 
to link observed variables (for input and target), whereas there were no studies linking simulated 
variables with observations. It has been successfully used to estimate the wind speed (Philippopoulos 
and Deligiorgi, 2012; Cadenas and Rivera, 2009; More and Deo, 2003), with better performances 
than more traditional statistical methods. Delon et al. (2007) used this technique to determine 
nitrogen oxide soil emission from environmental variables. Coulibaly et al. (2005) used a neural 
network to downscale temperature and precipitation observations, whereas Liu and Coulibaly (2011) 
applied the same technique to improve hydrologic forecasting on a weekly time scale. ANN were also 
used for short term forecasting (one to a few hours) of the wind speed (Liu et al. (2015); Hu et al. 
(2016)). 
 
The aim of this study is to build an ANN, using simulated variables as inputs (from the operational 
WRF simulations outputs) and observations as targets (temporary observations used to train the 
ANN). In order to go beyond the study of Duine et al. (2016), the betterment of the combinational 
use of an ANN and numerical simulations is to downscale mesoscale simulations to forecast a local 
wind. The paper is organized as follows: In the first section, the site of the study and the data used 
are described. The next section is dedicated to the presentation of the numerical weather predictions 
with the WRF model, and their evaluation against observations. Then, the third part introduces the 
ANNs, their utilization jointly with the WRF output and the results they brought. Finally, these results 
are discussed in the last part. 
 
 
2. Site and observations 
 
2.1 Description of the site 
 
The study is focused on the CEA Cadarache Center located in south-eastern France, 
50 km north of the Mediterranean Sea and near the Alps Mountains, in a pre-alps 
region featuring a lot of small valleys and mounts (Figure 1a). Especially, Cadarache is 
situated at the junction of two valleys: the middle Durance valley (DV), oriented north-
north-east to south-south-west (approximately 67 km long, 200 m deep, 5 km wide 
with a mean slope of 0.2°) and the smaller Cadarache valley (CV) oriented south-
east to north-west (approximately 6 km long, 100 m deep, 1 to 2 km wide with a 
mean slope of 1.2°, Duine et al., (2017)). 
 
Typical regional meteorological phenomena occurring in the region are sea breeze 
(Cros et al., 2004) and Mistral (Bastin et al., 2005) which is a regional wind caused by 
channeling along the Alps and Massif Central mountains (from the north to the 
south). Precipitation events are usually brought by south-east winds. The region is 
also often subject to heavy precipitation events (Berthou et al., 2016), especially 
during the fall. Furthermore, the region is characterized by a high occurrence of clear 
skies leading to frequent stable conditions during nighttime and producing thermally-
driven down-valley winds. These conditions were investigated during the KASCADE 
experiment (from 13th December 2012 to 18th March 2013, Duine et al., 2017). The 
main goal of this experiment was to observe the evolution of characteristic winds on 
the Cadarache site and especially during stable conditions. During daytime, the 



typically westerly wind results from a synoptic forcing or a sea breeze. After sunset, 
when the synoptic forcing is low enough, stable conditions can occur, leading to the 
formation of a down-valley wind in the Cadarache valley. Its thickness is about 50 m 
with a maximum speed at 25-30 m. The stability quickly collapses after sunrise, and 
the westerly wind comes back. Above this Cadarache down-valley wind, and under 
the same conditions of formation, another wind develops from around  200 m above 
ground level and up to about 600 m, going down the Durance valley.  
 
 

 
 

Figure 1: (a) Topography of the region of Cadarache as represented in WRF with a 111 m horizontal resolution. The blue 
line represents the Durance valley (DV), the black line represents the Cadarache valley (CV) and the red dots represent 
the locations of the meteorological stations MET01 and GBA. (b) Topography of the same area as represented in WRF 
simulations at 3 km of horizontal resolution. 

 
2.2 Available observations 
 
The observations used in this study are twofold: time-limited and permanent. Inside 
the Cadarache valley at the MET01 station, numerous observations were made along 
the vertical during the 3-month period of the KASCADE experiment, and a 
meteorological station was operated at 2 m in the same place from July 01, 2014 to 
February 25, 2016. The MET01 site is located 1.6 km up-valley from the GBA station 
(see Fig. 1), which is approximately in the middle of the Cadarache valley main axis. 
The second set of observations gathers continuous measurements made in 
Cadarache. They are detailed in Table 1. The GBA station is a 110 m mast situated 
at the bottom of the Cadarache valley. It measures pressure and temperature at 2 m 
and wind and temperature at 110 m, which is a level situated just above the top of 
valley flanks. 
 

Latitude

 
Longitude 



 

Tableau 1: Summary of observations (long time series) made in Cadarache. T stands for temperature, P for pressure, Rh 
for relative humidity and agl for above ground level. The location of each station is shown on Fig. 1.  

Station Height (m agl) Measures Dates Time step 

MET01 2 m 
T, P, downward shortwave 

radiation, Rh, rain 
Since 01/07/2014 

10 min 
wind (speed and direction) 01/07/2014 – 25/02/2016 

GBA 2 m P, T continuously 10 min 110 m Wind (speed and direction), Rh, T 
 
3. Numerical simulations  
 
3.1 WRF simulations set-up and output 
 
We used the output of the simulations launched in a daily routine mode since 
February 2015 with the WRF model. Initial and boundary conditions are set through 
GFS forecasts at 0.25° of horizontal resolution and with 26 vertical levels. The 
simulations are done on two nested domains centered on Cadarache. The first one, 
with the coarser horizontal grid spacing of 9 km, encompasses the entire France, 
while the second domain with a finer horizontal grid spacing of 3 km (for a domain 
size of 300 by 300 km) encompasses the south-east part of France. With a 3 km 
horizontal grid spacing, the Durance valley is roughly resolved but the smaller 
Cadarache valley (1 km width) is not resolved (Figure 1). The rest of the model 
configuration description used for these simulations is described by Kalverla et al. 
(2016) with the Noah land surface scheme and the QNSE surface layer scheme. 
 
The forecasts last 108 hours (with output saved every hour). Since we know that the 
longer the forecast, the poorer the quality (mainly because of degraded GFS 
boundary conditions), and in order to be sure that the spin-up periods were 
discarded, we retained the period from +24h to +47h (from each daily forecast), 
which allows us to rebuild a complete time series from February 17, 2015 to February 
17, 2016. Then, the selected WRF output data (see part 4.5.1 for the detail of 
variables) are bilinearly interpolated to MET01 and GBA stations coordinates. Finally, 
the 3D data are also interpolated at the heights 10, 20, 30, 50, 100, 150, 200, 300, 
400 and 500 m above ground level, from sigma-coordinate levels provided by the 
WRF output. 
 
3.2 Evaluation of performance 
 
The simulations are evaluated by comparison with the observations made in the 
Cadarache valley. We will focus on the wind at 110 m, which represents the flow at 
scales larger than the size of the valley, on the wind at 2 m, which reflects the valley-
related flow, and then on the overall stability through the temperature difference 
between those two heights. 
 
The performances of the wind direction forecast are based on the DACC (Direction 
ACCuracy, Santos-Alamillos, 2013), which represents the proportion of winds that do 
not depart by more than 45° from observations, and on the PC (Proportion Correct) 
which is the proportion of values correctly classified considering different classes 
chosen to represent the main wind sectors and defined from the observed wind rose. 



The PC is used through two forms: The PC2, already used by Duine et al. (2016), 
considers two wind sectors, the south-east quarter for the down-valley winds for the 
first class and all other directions for the second class. The PC3 considers 3 classes 
(Figure 2) (in blue the class of Cadarache down-valley winds (CDV), in green the class 
of up-valley winds and in red the class of valley transverse winds). The classes of PC 
being chosen based on 2 m wind directions, their values are relevant only for the low 
level winds in the Cadarache valley. The performances of the wind speed forecast is 
assessed through the correlation coefficient, bias and mean absolute error (MAE) 
computed between observed and predicted series.  
 

 
Figure 2: Wind rose of hourly averaged observations at 2 m from Feb. 17, 2015 to Feb. 17, 2016 and classification of the 
winds into three direction classes (blue for down-valley winds, green for up-valley winds and red for cross-valley winds). 

 
 
 
The comparison was done for the one year period (February 17, 2015 – February 17, 
2016), which corresponds to 8760 samples (hourly forecasts).  
 
 3.2.1 Wind at 110 m 
The simulated and observed wind roses (Figure 3a and 3b) display the same features, 
with three major wind sectors: westerly winds, north-north-easterly winds aligned with 
the Durance valley and south-easterly winds generally associated with cloudy/rainy 
weather. Concerning the directions, the DACC reaches 0.64. The probability density 
function (PDF) of the directions (Figure 4) confirms the overall agreement between 
observed and forecasted directions, with the highest PDF values concentrated in the 
three main sectors. However, the figure also reveals a zone of observed NE winds 
whereas corresponding forecasted winds cluster around CDV direction. This failed 
forecast provides from a bad forcing by the GFS data. Moreover, 65% of the WRF 
failures can be attributed to a bad forcing. 
The forecasted speeds are slightly overestimated (bias of +0.98 m/s) which can be 
attributed to a strong overestimation in the forcing data (bias of +1.16 m/s in the GFS 
data). 



 
Figure 3: Wind roses calculated with an angular resolution of 10°, for the WRF simulations (a and c) and for the 

observations (b and d), at the GBA (and b) and MET01 (c and d) sites. Wind speeds are in m/s.  

 

 
Figure 4: Comparison of the 110 m wind direction (a) and speed (b) observed and forecasted, represented by the 
probability density function (color scale). The densities are calculated for wind direction groups of 10° and wind speed 
groups of 0.2m/s. The red, green and blue rectangles in a) correspond to the three wind sectors of Figure 2. 

 
 3.2.2 Wind at 2 m 
The wind speed at 2 m is calculated from the simulated 10-m wind, assuming 
logarithmic profiles corresponding to neutral conditions, and compared to the 
observations done at the same height (MET 01 site). Wind directions at 10 m and 2 
m are assumed to be equal. The valley clearly impacts the observed wind since 
nearly all winds are aligned with the valley axis (Figure 3d). The large-scale, westerly 
winds are channeled by the valley and take a north-west (up-valley) direction. The 
south-east winds correspond to a mix of valley-channeled winds (Duine et al., 2017) 
and rainy weather conditions. This channeling is not forecasted by the model, which 
maintains for the wersterly and south-easterly winds the same occurrence as at 110 
m. The NE Durance valley wind has disappeared, which is consistent with the 
observations, as already noticed by Duine et al. (2017) who showed that this flow 
does not appear below 100 m at the MET01 location.  



The probability density function (Figure 5) shows that the west-to-north-westerly 
directions are correctly forecasted while down-valley winds (CDV on y-axis) are very 
poorly simulated since the corresponding forecasted directions spread over all the 
possible values. 
 
At 2 m, the simulations produce a DACC of 0.55, a PC2 of 0.65 and a PC3 of 0.50. 
The wind speed is overestimated (bias of +1.09 m/s and MAE of 1.31 m/s for a mean 
speed of 1.39 m/s), which is probably caused by a too weak friction resulting from the 
smoothed topography in the simulation.  
 

 
Figure 5: Same as Figure 4 but for the wind at 2 m. 

 
 3.2.3 Temperatures 
Duine et al. (2016) showed that the difference of temperature between 110 m and 2 
m was a good indicator of the existence of the CDV wind. Hence, it is interesting to 
evaluate how the forecasted temperatures compare to the GBA permanent 
measurements. It appears that the simulations underestimate the diurnal temperature 
range with a lack of heating during the day and a lack of cooling during the night, 
failing for example to reproduce negative temperatures at 2 m (see Fig. 6). This 
behavior has already been noticed by Kalverla et al. (2016) for WRF simulations of 
the same region. The simulation is worse for the cold temperatures than for the warm 
ones. The standard deviation of the difference between observations and simulations 
at 110 m (resp. 2 m) is 2.24°C (resp. 2.96°C) for minimum temperatures and 1.67°C 
(resp. 2.33°C) for maximum temperatures; however, the daily mean temperature is 
rather well reproduced with a bias of -0.39°C (resp. +0.17°C). From here onwards, 
we will analyse potential temperature difference between these two levels Δθ 
because this parameter is more relevant than static temperature difference to 
represent the stratification. 
 
In the observations, the daily cycle of Δθ is usually well marked: the atmosphere is 
stably stratified during the night and unstable during the day (Figure 6). This cycle is 
overall well reproduced by the simulations. Before sunset, the tendencies are similar 
and the change of stability occurs approximately 3 h before sunset, about one hour 
earlier in the observations than in the simulations. The maximum observed Δθ is 
reached about 3 h after sunset, while in the simulations this parameter continuously 
strengthens all along the night. Δθ starts to decrease at sunrise in the simulations, 1 
h earlier than in observations. The stable stratification period is therefore 2-hr shorter 
in the simulations. This difference is caused by heating (resp. cooling) at 2 m which 
occurs earlier (resp. later) in simulations. Though the topography is smoothed in the 



model, it has been verified that this difference cannot be attributed to a shadowing 
effect on the observations. In the morning, the boundary layer becomes unstable 3 h 
earlier in simulations than in observations. Overall, Δθ is lower in simulations than in 
observations (negative bias of -0.56 C° and mean absolute error of 1.26 °C), and 
especially during the morning transition with a faster decrease of Δθ in simulations. 
 
The graph of probability density function (Figure 6c) represents the level of agreement 
between the observations and the simulations. It can be divided into three parts. The 
first one covers the observed negative Δθ (unstable stratification). In this zone, the 
simulated values are also negative and a large part of the values are grouped close 
to the 1:1 line which reflects a good agreement. The second part covers the observed 
values included in the range [0 - 2 C°], which corresponds to the hours preceding 
nightfall and following sunrise. There is a poor agreement in this range, with 
simulated values spread between -1 °C and 4 °C. The last part covers the observed 
values higher than 2 °C which corresponds to stable nighttime periods. The 
simulated values are positive too, but there is a large scatter showing the difficulty to 
accurately simulate the intensity of the stratification during the night. 
 

 
Figure 6: (a): Sunset-referenced mean diurnal cycle of potential temperature difference between 110 m and 2 m. Blue 
color is for observations and red for simulations. Vertical bars represent standard deviations within each 1-hr time 
interval. (b): id. to (a) but sunrise-referenced. (c) : probability density function showing the comparison bewteen 
observed and forecasted potential temperature difference. 

To conclude on this comparison between observations and simulations, the general 
behavior of vertical potential temperature difference is well reproduced for unstable 
as well as for very stable conditions. The winds at 110 m are pretty well reproduced, 
with the three main directions well forecasted. On the other hand, the forecast of the 
wind at 2 m is not good, especially for south-easterly winds. These winds are mostly 
observed during the night (density flows). Moreover, their direction is forced by the 
relief since they are down-valley winds (Duine et al., 2017). This is not surprising 
since the topography in the coarse WRF simulations is resolved for horizontal scales 
larger than 3 km only. Therefore, in the absence of finer-scale simulations, the 
forecast of local valley winds requires a statistical technique able to downscale the 
WRF simulations. 
 
 
4. Artificial neural network 
4.1 Principle and configuration used 
 
An ANN is a statistical tool whose aim is to calculate a function linking two data sets 
(available on the same period). One data set (unknown variables) is considered as a 
target to be reproduced while the other is composed of known variables. The ANN 



starts with a randomly chosen function which uses the known variables to produce a 
result which has to reproduce the unknown data set. This function is composed of 
some weighted activation functions (the so-called neurons), interconnected between 
each other and arranged in layers. 
  
The two data sets are randomly divided into three sub-sets: training, validation and 
test. Then, the next step, applied upon the training set, consists in fitting the above-
mentioned function to produce results as close as possible to the target data set. This 
step is iterative and lasts until the performance calculated on the validation set 
reaches a limit and no longer improves. Finally, the generalization degree of the 
ANN, that is its efficiency to produce good estimates on data sets differing from the 
training ones, is assessed based on the mean squared errors of the difference 
between true and ANN predicted values, for both the training and test sets. The two 
errors have to be as low and close to each other as possible (Dreyfus et al., 2002). 
The test set is also useful to compare different ANNs between each other. 
 
ANNs are very good interpolators, but very poor extrapolators (Gardner and Dorling, 
1998). So, the dataset used to train the ANN has to be as big and heterogeneous as 
possible, to include the widest range of cases that the ANN is expected to 
encompass.  
 
The ANN used in this study is a Multi-Layer Perceptron (MLP) type (Beale et al., 
1992). The MLP is frequently used in atmospheric sciences (Gardner and Dorling, 
1998). Its specific feature is that each neuron of a layer is connected with all the 
neurons of the previous and next layers. It is composed of an input layer, at least one 
hidden layer and an output layer. Here, the input layer is composed of the training 
variables and there is a single hidden layer of 10 neurons (this number was chosen 
after scanning the ANN performance for a number of neurons varying from 5 to 50). 
The output layer (target) is composed of two neurons which are expected to 
reproduce the horizontal wind components at 2 m (u and v). The activation function is 
the hyperbolic tangent mathematical function, because it offered better results than 
other functions currently used in ANN computation, like log-sigmoid or linear 
functions. The dataset is randomly split, between 60% of data for the training set, 
10% for the validation set and the remaining 30% for the test set, which allows us to 
be confident in the evaluation of the ANN performance thanks to the large amount of 
data composing the test set. Furthermore, the input variables are normalized 
between -1 and +1 before entering the ANN to avoid weight discrepancy problem that 
happens when the order of magnitude of variables is different. 
 
In a first step, this ANN was applied to the KASCADE data to assess its efficiency to 
nowcast the wind in the Cadarache valley. The performance will be compared to the 
temperature threshold method of Duine et al. (2016). 
 
4.2 Nowcasting from observations: ANN vs. threshold method 
 
Duine et al. (2016) have developed a method to nowcast the occurrence of the CDV 
density current. For that purpose, they used the KASCADE observations of the wind 
at 10 m in the valley (from December 13, 2012 to March 16, 2013). Among the three 
following criteria:  i) temperature difference between 110 m and 2 m, ii) wind speed at 
110 m and iii) a bulk Richardson number derived from the first two variables, the first 



one gave the best performance and the optimal threshold was therefore computed on 
this parameter. Their method produces its best result, using as criterion a 
temperature difference of 1.5 °C between 110 m and 2 m. Values greater than 1.5 °C 
are mainly associated with density down valley winds while values lower than 1.5 °C 
mainly correspond to winds at 10 m forced by the winds at 110 m.  
 
In this study, this method was applied to nowcast not only the CDV density current, 
but every wind that can occur in the Cadarache valley. For this, the dataset used 
from the KASCADE observations is not exactly similar to the one Duine et al. (2016) 
have used. The best result (PC2 of 0.80) was brought by the same criterion: a 
vertical temperature difference of 1.5°C between 110 m and 2 m.  
 
 
4.3 Nowcasting CDV winds during the KASCADE period with the ANN 
 
The ANN launched for the KASCADE period (ANNK) used four measured variables 
as input: Δθ, the wind speed at 110 m  and the 110 m wind components, i.e. 
the same observations as those used by Duine et al. (2016). The global dataset is 
composed of 3138 samples, corresponding to a training set composed by 1883 
samples, a validation set of 314 samples and a test set of 941 samples. The PC2 
reaches 0.94, which is better than the Duine, et al. (2016) result of 0.91 (see Table 2 
for the full results). Moreover, the ANN method provides not only the wind direction, 
as in Duine et al. (2016), but the two wind components from which both the speed 
and direction can be computed. Figure 7 presents the comparison between the 
observed and ANN-estimated wind speed and direction. The agreement is very good, 
with two hot spots (dark red areas with density > 20%) corresponding to the up valley 
(NW) and down valley (SE or CDV) wind directions, respectively. 
 

 
Figure 7: Same as Figure 4 but for the comparison of observations to the ANNK nowcasting. 

So, the ANN appears as a good tool to nowcast the low-level winds in the Cadarache 
valley. However, there are a few observations for which the wind directions are poorly 
reproduced by ANNK (see in Fig. 7a the dots outside the colored boxes). Given the 
very high correlation between observed and ANNK-computed wind components (0.96 
and 0.93 for u and v, respectively), these defects could be attributed to very weak 
winds for which the directions are highly variable. The ANNK performance indexes 
were thus recalculated after having removed the computed wind speeds lower than 
0.5 m/s. They are largely improved (row "ANNK-05" in Table 2), especially for the 
direction (from 0.91 to 0.96 for DACC, from 0.94 to 0.97 for PC2 and from 0.89 to 
0.94 for PC3).  



 
This allows concluding that the ANN is a suitable tool to nowcast the wind in the 
Cadarache valley based on above-valley observations. 
 
4.4 Nowcasting CDV winds during a full year with the ANN 
 
Given the encouraging results obtained on the KASCADE period, we decided to run 
the ANN on a full year period (from February 17, 2015 to February 17, 2016). The 
configuration was similar, with the same input parameters, but the observations of the 
CV wind were done at 2 m instead of 10 m for the KASCADE period (though at the 
same location). This run was called  ANNOBS-yr. Like for the KASCADE period, we got 
excellent performances, with values of 0.94, 0.82 and 0.86, for P2, PC3 and DACC, 
respectively. The correlation coefficients were 0.89, 0.93 and 0.86 for the wind 
speed, the u and v components, respectively. The bias and MAE on the wind speed 
were as low as -0.17 m/s and 0.50 m/s, respectively (see Table 2). We will consider 
this run as a reference for the subsequent analysis of ANNs performance, as it was 
done on a long time series (a full year) and evaluated against in situ observations. 
 
4.5 ANN applied to forecasting from WRF simulations 
 
 4.5.1 Searching for the most pertinent WRF variables  
 
Among the numerous WRF output parameters, some have to be chosen as input for 
the ANN. Since the goal is to downscale the wind in the Cadarache valley at the 
MET01 position, the variables related to the larger-scale meteorological forcing and 
to local atmospheric stability are privileged. A first list was defined as follows:  
 
- Pressure at 2 m above ground level 
- Hourly precipitation 
- Relative humidity at 2 m above ground level 
- Short-wave and long-wave net radiation 
- Wind direction and speed at different heights 
- Wind components at 10, 20 and 100m 
- Vertical potential temperature difference between 110 m and 2 m: Δθ 
- Boundary-layer height 
- Friction velocity u* 
- Bulk Richardson number between 2 m and 110 m (as in Duine et al., 2016)  
- Fractional time of the day 
- Relative hour to closest sunset 
- Relative hour to closest sunrise 
 
For the one-year period of observations, only the 2 m wind observations at MET01 
are available inside the valley. So, in order to have comparable variables, the wind 
simulated at 10 m, has been recalculated at 2 m using a logarithmic profile derived 
from the wind measurements at 2 m, 10 m and 30 m collected during the KASCADE 
experiment at the MET01 location.  
 
The selection of WRF-simulated variables that are used as input for the ANN is made 
in two steps (Dreyfus et al., 2002):  



1. We computed the correlation coefficient between each possible pair of 
variables, and when the values were higher than 0.8 the two corresponding 
parameters were considered as redundant and one of them was removed. 
The wind components at 10 m, 20 m and 100 m were highly correlated, 
and the two upper levels were thus removed. The friction velocity (strongly 
related to the boundary layer height) was also removed. Then only 14 
variables remain after this first step of elimination. 

2. The second step of selection consists in evaluating the impact of each 
variable on ANN performances. A reference ANN is launched with the 14 
selected variables available as inputs (called ANNWRF14 in Table 2) and 14 
other ANNs are launched, each one with removing a different variable. The 
less significant variables are thus identified and removed. Then, the same 
operation is repeated until none of the retained variable could be discarded 
without degrading the ANN performance. At the end of this process, 4 
indispensable variables are retained: the two wind components at 10 m, 
the wind speed at 110 m and Δθ (discussion about their role hereafter). The 
final version of ANN using these variables will be called ANNWRF hereafter. 

 
4.5.2 Performances of the ANN 

The results produced by the ANNs used in this study are compiled in Table 2. The 
performances calculated for the WRF simulations (see above) are also included to 
appreciate the improvement brought in by the different ANNs. 
 
 
Table 2: Summary of performances calculated for the WRF simulations and several ANNs. Mean Square Error (MSE); PC2 
for 2 direction classes and PC3 for 3 classes (see Fig 2). WRF110m and WRF10m show the performances of the WRF 
simulations in comparison to the observations at 110 m on the tower (GBA site on Fig. 1), and at 10 m in the valley 
(MET01 site on Fig. 1), respectively. ANNK and ANNK-05 show the results for the KASCADE period,  the winds lower than 
0.5m/s having been removed for the latter. In the rows Nr. 5 to 7, the data from the one year period have been used. 
ANNOBS-yr shows the performances using continuous observations as input, ANNWRF14 shows the results for the ANN 
launched with 14 WRF variables and ANNWRF shows the results for the ANN using the 4 most relevant WRF variables as 
input. "Gain" shows the improvement of performances brought by the ANN  on the WRF output. "Loss" shows the loss of 
performance using WRF output rather than observations as ANN input. 

 
 
Whatever the index used, the performances of the low-level wind forecast are clearly 
improved when the ANN is applied on WRF output (ANNWRF compared to WRF10m). 
The bias on the wind speed diminishes from +1.79 m/s to -0.46 m/s. The 
improvement on the wind direction is the best, with DACC reaching 0.75 (instead of 
0.56), PC2 0.86 (instead of 0.71) and PC3 0.74 (instead of 0.53). These 



improvements are also clearly visible when comparing Figure 5 and Figure 8. While the 
simulations alone failed to reproduce the CDV wind, resulting in a large scatter in 
Figure 5a, the corresponding graph for ANNWRF shows a clustering of values close to 
the 1:1 line (Figure 8). The failures correspond to a switching between down-valley 
and up-valley directions (9.2% of data set). Another striking behavior is that the 
neural network is only able to compute winds aligned with the main valley axis (up- or 
down-valley), and fails to compute cross-valley winds which are sometimes (17% of 
the data set) observed. Regarding the wind speed, Figure 58b highlights a small 
negative bias (-0.46 m/s) in the ANNWRF data, which also represents a large 
improvement with respect to the values produced by the WRF simulations alone (bias 
of +1.79 m/s, cf. Fig. 5b). The mean absolute error is similarly reduced from 2.00 m/s 
for the simulations alone to 0.81m/s for the ANNWRF. 

 
Figure 8: Same as Figure 4 but for the the ANNWRF forecasts. 

 
The improvement on the wind forecast is also visible on the probability distribution of 
errors on the wind direction (Q-Q plot diagram on Figure 9). The errors are lower for 
the ANNWRF forecast than for pure WRF simulations. As an illustration, 50% of the 
ANNWRF errors are in the [-20°,+20°] range, whereas 50% of the WRF errors are 
spread over the [-45°,+45°] range.  

 

 
Figure 9: Comparison on a Q-Q diagram between the errors in degrees on wind directions for pure WRF forecasted directions 
(ordinate) and for ANNWRF forecasted directions (abscissa). Each dot represents one percentile out of two and the 25th, 50th 

and 75th percentile are represented by circles. 
 

5. Discussion 
 



 5.1 Relative effect of ANN input parameters 
Using only 4 variables (u10, v10, U110 and  Δθ ) out of the WRF forecast as ANN 
input enables the ANN to calculate the 2 m wind at one spot in the Cadarache valley. 
However, the impact of each variable on the ANN result is different.  
 

1. The ANN calculates the two wind components at 2 m, which explains that 
the WRF wind components at 10 m (the lowest level for the wind in the 
WRF simulations) are very important for the ANN performances. Though 
the WRF wind at this level is not often ill oriented because of the smoothed 
model topography, the correlation coefficients for the wind components 
reach 0.70 and 0.59 respectively for the u and v components. 

2. Duine et al. (2017) have shown the high occurrence of CDV wind over 
Cadarache and they have demonstrated that they are induced by stable 
conditions and topography. However, these winds are not well reproduced 
in WRF because of the smoothed topography. The use of Δθ, which is 
related to atmospheric stability, enables the ANN to improve the calculation 
of the CDV winds. Δθ is strongly connected to the down-valley wind. As 
long as the stratification is strengthening, the occurrence of winds going 
down-valley is increasing. This shows the link between the CDV wind and 
the stratification (Figure 10). This link was already demonstrated by Duine 
et al. (2017) for the Cadarache valley. 

3. Removal of the wind speed at 110 m degrades several performance 
indexes, which makes this variable useful for the calculation. At 110 m, the 
wind speed can be considered as a good indicator of forcing above the 
Cadarache valley which is impacting for stability and wind in the valley. 

 

__ 
Figure 10: Proportion of ANNWRF-computed CDV winds as a function of the WRF-computed vertical potential temperature 
difference. 

 
 5.2 ANN strengths and weaknesses 
Figure 8 already highlighted some limitations on the forecasting of winds not aligned 
with the valley axis. This is also illustrated in Figure 11, which shows the occurrences 
of the two wind components, in the observations and forecasted by the ANNWRF 
model. Besides the narrowness of the two main directions on the simulated winds, 
with respect to the observed ones, the plots also reveal a non-alignment of the two 
opposite winds: the down-valley winds are parallel to the main axis of the valley, 
whereas the "up-valley" directions cluster around ~280°, i.e. a ~25° backing from the 
valley axis. This behavior, mainly observed during the day, is related to larger-scale  



çforcing (Mistral conditions, see e.g. the wind rose on Fig. 2), when turbulence 
transports momentum from upper levels close to the surface, thus lowering the 
channeling effect of the local valley. 
 
Furthermore, the ANN performance is improved when the wind speed strengthens 
(see Figure 12 and the comparison between ANNK and ANNK-05 in Tab. 2). Up to 3.6 
m/s, there is always a 100% performance considering the DACC value. There are 
two reasons for this. Firstly, this is due to the method used to calculate the wind 
direction, which is not directly calculated by the ANN (as it is not possible to compute 
cyclic functions through ANN), but derived from wind components. All things being 
equal, a small error made on one component for lower winds produces a higher error 
on the wind direction than for stronger winds. Moreover, it is well know that the 
directions are not well defined for the low winds (Jarraud, 2008). Then, the difficulty 
to calculate the directions for low winds is another explanation for the bad 
representation of winds orthogonal to the valley (mean wind speed of 0.66 m/s for 
these winds against 1.10 m/s for the CDV winds and 2.08 m/s for the up-valley 
winds), which in turn justifies the discarding of low speed winds (< 0.5m/s) calculated 
by the ANN. 
 
 

  
Figure 11: Probability density of wind components observed (a) and calculated by ANNWRF (b). The blue lines and the 
corresponding labels indicate the wind directions. The cyan line shows the direction of the valley axis. The dotted circles 
represent the wind speeds, spaced by 1 m/s, and the black one represents 0.5 m/s.  

 
  
 



 
Figure 12: DACC values as a function of the wind speed calculated by the ANNWRF (blue bars and left ordinate scale), and 

number of data in each wind speed bin (black line and right ordinate scale). 

 
 
Another parameter investigated as possibly impacting the performances of an ANN is 
the quality of input data. 
The high performance reached by the ANNOBS-yr shows the efficiency of an ANN to 
calculate a local wind, with a low error, using observations. But, using forecasted 
data (containing their own forecasting errors) as input increases the ANN error which 
explains the higher performances of the ANNOBS-yr compared to the ANNWRF. 
Thereby, the ANN error due to the forecasting error was estimated ("Loss" line in 
Table 2). Although the loss of performance of the ANNWRF is not negligible, the gain 
brought compared to the pure WRF simulations remains very appreciable.  
 
6. Conclusion 
 
The aim of this study was to complement WRF mesoscale simulations in order to 
predict a local wind mostly forced by subgrid-scale orographic effects unaccessible in 
WRF given the horizontal resolution of the model (3 km). In particular, during stable 
stratification periods when the larger-scale forcing is low, a density current whose 
direction is constrained by a small valley (1 km width) is regularly observed but not 
forecasted. Since the overall stratification is pretty well reproduced in the mesoscale 
simulations, a statistical downscaling has been elaborated using an artificial neural 
network, the performance of which was evaluated against observations done at one 
spot inside the valley. 
 
Artificial neural networks are powerful statistical tools allowing to represent complex 
non-linear phenomena. For that purpose, they are generally trained and evaluated 
with observations. In this study, the observations done during the 3-month KASCADE 
experiment, at a height larger than the valley depth and therefore representative of 
the non-local flow, have been used in a first step to evaluate the ANN capability to 
infer the wind inside this small valley. The ANN got excellent results, surpassing a 
statistical nowcasting method developed formerly upon the same dataset by Duine et 
al. (2016). 
 



The next step was to apply the ANN technique to the output of the WRF model run in 
an operational mode with a 3-km horizontal resolution. For every day during a full 
year, the 24-to-48 hr forecast period was used as input to the ANN. The 
observations, available during this 1-yr period, consisted in wind speed and direction 
measured at 2 m agl in the central part of the small Cadarache valley. These 
observations served to train the ANN. One year of data constitute a large enough 
dataset to encompass most of the meteorological conditions representative of 
Cadarache.  
 
Thanks to the 1-yr observations, and to the continuous observation done on the 
Cadarache site (wind and temperature at 110 m on a tower, and temperature at 2 m), 
the overall performance of the WRF simulations was first evaluated. Not surprisingly, 
the wind at 2 m is not well forecasted due to the lack of local topography in the 
simulations. On the other hand, the wind at 110 m and the temperature difference 
between 2 m and 100 m are pretty well forecasted, showing that some parameters, 
poorly related to the local topography, can be well reproduced even with a coarse 
horizontal resolution. This encouraged us to feed an ANN with such parameters in 
order to forecast the local valley winds. With respect to the downscaling, nowcasting 
technique developed by Duine et al. (2016), we went a step further with the possibility 
to forecast the local valley winds. 
 
Hence, several WRF variables were tested to feed the ANN. After elimination of 
redundant parameters, as well as of the parameters whose impact on the result was 
weak, four of them were definitely retained (the wind components at 10 m, the 
difference in potential temperature between 110 m and 2 m, and the wind speed at 
110 m). 
 
The ANN significantly improved the forecast of the wind in the Cadarache valley, for 
both the speed and direction. The scores obtained for the full year were 0.75 for 
DACC, 0.86 and 0.74 for PC2 and PC3, respectively, the bias on wind speed was 
0.46 m/s and the MAE 0.81 m/s. We have coped with the main failure observed in the 
WRF simulations, concerning the valley winds: the wind direction is now satisfactorily 
forecasted and the important bias on the speed is considerably decreased. 
 
The ANN performance is improved as long as the wind speed increases. This is 
probably related to the fact that the ANN output is not the direction itself (against 
which the performance is evaluated), but the two wind components, from which the 
direction is computed. Furthermore, the strong directional pattern of the wind 
observed (with 78% of winds aligned along two main directions) brings the ANN to 
miss the winds differing from these two directions.  
 
In conclusion, the artificial neural network technique is a valuable tool to downscale 
the output files of the numerical simulations and forecast the local flows at a scale 
which is not resolved by the model. A set of observations, large enough to 
encompass the variability of the meteorological conditions observed at a given 
location, is required to the training step of the ANN used. The ANN technique can 
thus be used to estimate the local flows either from continuous observations 
representative of a larger scale, as in Duine et al. (2016), or from operational weather 
forecast model whose resolution is too coarse to take into account the local influence 
of the topography, land use, etc.. To our knowledge, this promising technique has not 



been previously used on routinely forecasted meteorological fields, though its high 
potential for weather as well as air quality concerns. 
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