C. Cannamela, J. Garnier, and B. Iooss, Controlled stratification for quantile estimation, Annals of Apllied Statistics, vol.2, pp.1554-1580, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355016

J. Chilès and P. Delfiner, Geostatistics: Modeling spatial uncertainty, 1999.

S. D. Veiga, Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, vol.85, pp.1283-1305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00903283

A. De-crécy, P. Bazin, H. Glaeser, T. Skorek, J. Joucla et al., Uncertainty and sensitivity analysis of the LOFT L2-5 test: Results of the BEMUSE programme, Nuclear Engineering and Design, vol.12, pp.3561-3578, 2008.

M. De-lozzo and A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, Journal of Statistical Computation and Simulation, vol.86, pp.3038-3058, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01090475

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2006.

R. Ghanem, D. Higdon, and H. Owhadi, Springer Handbook on Uncertainty Quantification, 2017.

G. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, Measuring statistical dependence with hilbert-schmidt norms, Proceedings Algorithmic Learning Theory, pp.63-77, 2005.

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods, Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp.101-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00975701

B. Iooss and A. Marrel, An efficient methodology for the analysis and metamodeling of computer experiments with large number of inputs, Proceedings of UNCECOMP 2017 Conference, 2017.

A. Marrel, B. Iooss, S. Da, M. Veiga, and . Ribatet, Global sensitivity analysis of stochastic computer models with joint metamodels, Statistics and Computing, vol.22, pp.833-847, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00232805

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics and Data Analysis, vol.52, pp.4731-4744, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00239492

P. Mazgaj, J. Vacher, and S. Carnevali, Comparison of CATHARE results with the experimental results of cold leg intermediate break LOCA obtained during ROSA-2/LSTF test 7, EPJ Nuclear Sciences & Technology, vol.2, issue.1, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02305417

W. T. Nutt and G. B. Wallis, Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties, Reliability Engineering and System Safety, vol.83, pp.57-77, 2004.

J. E. Oakley, Estimating percentiles of uncertain computer code outputs, Applied Statistics, vol.53, pp.83-93, 2004.

B. Rutherford, A response-modeling alternative to surrogate models for support in computational analyses, Reliability Engineering and System Safety, vol.91, pp.1322-1330, 2006.

T. Santner, B. Williams, and W. Notz, The design and analysis of computer experiments, 2003.

D. Woods and S. Lewis, Design of experiments for screening, Springer Handbook on Uncertainty Quantification, pp.1143-1185

. Springer, , 2017.

I. Zabalza, J. Dejean, and D. Collombier, Prediction and density estimation of a horizontal well productivity index using generalized linear models, ECMOR VI, Peebles, 1998.

E. Zio and F. D. Maio, Bootstrap and order statistics for quantifying thermal-hydraulic code uncertainties in the estimation of safety margins, Science and Technology of Nuclear Installations, vol.340164, 2008.