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Introduction & context 
 From the industrial needs to 
 fundamental research 
  



Polymers used in the electronuclear industry 
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Polymers in contact with radionuclides in the Intermediate Level Long Lived Waste 
(IL-LLW) packages  

 
Main risk associated with storage : gas emission (inflammation, corrosion…) 

 
Estimate gas emission over at least 100 years (reversibility period) 

Function of the irradiation conditions 
Function of the polymer chemical structure (evolution with time & dose) 

 

A deep geological disposal 

ILW-LL package 

The French disposal project: Cigeo 



To understand hydrogen emission mechanisms 
 Study of polyethylene as model polymer 

|  Page 5 

“Simplest” polymer chemical structure before irradiation 

 

Representative of polymers in IL-LLW packages 

 

Presents the highest hydrogen radiation chemical yield 

Whatever the irradiation conditions 
 

Hydrogen is explosive/inflammable at high concentrations 

Safety studies focused on H2/PE couple 
Need to understand H2 emission mechanisms 
 

PE chemical structure 

CH
2

CH2
n

 



Effect of high doses on hydrogen release from PE 
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Hypotheses to explain this decrease 

1. Mass loss  

2. ↘ hydrogen reservoir in the polymer 

3. Energy transfers on the radiation-induced defects 

  -> Transfers of excitation, charges and radicals 

Polyethylene irradiated under conditions 
representative of storage 
 
Important ↘ of the hydrogen release yield 
when D ↗  

  => Why? 



Effect of high doses on hydrogen release from PE 
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Materials containing benzene rings shown in literature to be very stable under 
low LET ionizing radiation 

 
Efficient at high LET too 

 
 
  
 
 
 
 
 
 
 

 
 

Non conjugated bonds (C=C and C=O) also efficient 
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Evidences of energy transfers in copolymers 

Schoepfle & Fellows, Ind. Eng. Chem. 23 (1931), 1396 
Alexander & Charlesby, Proc. R. Soc. London, Ser. A 230 (1955), 136 
Basheer & Dole, J. Polym. Sci.: Polym. Phys. Ed. 22 (1984), 1313 

n

 m

 

Partridge, J. Chem. Phys. 52 (1970), 2485 

Slivinskas & Guillet, J. Polym. Sci.: Polym. Chem. Ed. 12 (1974), 1469 
Ferry et al., J. Phys. Chem. B 117 (2013), 14497 
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Rivation, Cambon & Gardette, Nucl. Instrum. Methods Phys. Res., Sect. B 227 (2005), 357 

Defects formed during irradiation of polyethylene 

Ventura, PhD thesis (2013) 



Methodology developed 
 
 To assess energy transfers 
 towards radiation-induced 
 defects 



Polyethylene(s) with controlled « defects » 
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Study of very well controlled polyethylene(s) 

Addition of specific groups with controlled: 
- Concentrations 
- Position of insertion (backbone or on side-chains) 
 

Polyethylenes commercially found  

 

Polyethylenes syntheses 

UCCS/CIMAP 
collaboration 

ICS/CIMAP 
collaboration 

PE perfect 
chemical structure 

CH
2

CH2
n

 



Organic material and radionuclides (RN) 
in the ILLW packages : a and b/g 
emitters 

 
 
Emitters simulation 

b/g emitters : g irradiations using 
60Co and 137Cs sources (0.3 to 0.7 
kGy.h-1) 
a emitters :  
- Irradiations of simulation, using C and 

Ar ions (≈ 500 kGy.h-1, at GANIL, Caen, 
France or at GSI, Darmstadt, Germany) 

 
 
Underlying mechanisms to be better 
understood  

Which parameters allow a decrease 
in the gas emission? 
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α 

β 

γ 

Irradiations under conditions representative of 
those in nuclear waste containers 

Ei ≈ 1 MeV (PE) 
 
 
 

2,5 MeV.mg-1.cm2 

0,0005 cm 
 
 
0,002 MeV.mg-1.cm2 

0,37 cm 
 
 
 
0,002 MeV.mg-1.cm2 

14 cm 



Set-ups depending on the irradiation 
conditions 

Closed ampoules  
- Gamma and High Energy GANIL line 
Specific devices 
- Medium Energy GANIL line 
- M-Branch GSI line 

 

Modifications induced by irradiation 
followed by 

High resolution gas mass spectrometry 
FTIR 
 
 

Irradiation and tracked-changes 
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Main results 
   
  



Energy transfers on ketone (>C=O) bonds 
 Main defect under oxidative atmosphere 

G(H2) ↘ more effective in PE under radio-oxidation than in copolymers with 
C=O defects chemically inserted in the backbone 

Indication of the contribution of the secondary defects (carboxylic 
acids…) 
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Slivinskas & Guillet, J. Polym. Sci.: Polym. Chem. Ed. 12 (1974), 1469 
Lacoste & Carlsson, J. Polym. Sci. Part A: Polym. Chem. 30 (1992), 493 
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Conversion dose <=> [C=O]  

G(C=O) ~ 4.10-7 mol.J-1 



Energy transfers on vinylene (C=C) bonds 
 Main defect under inert atmosphere 

PE containing C=C bonds 

Saturation effect at high 
concentrations 
Activity per protective bond ↘ 
- Dilution effect 
 
 

↘ of G(H2) in both cases   

Equivalent up to [C=C] ≈ 0.2 mol.kg-1 
in PE, i.e. ≈ 2 MGy  
At higher doses, other defects have 
to be taken into account 
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Perfect PE irradiated at high dose  

PE containing C=C bonds  
 

Inert atmosphere at low LET 

Ventura et al., J. Phys. Chem. B 120 (2016), 10367 
Ventura, PhD thesis (2013) 
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Energy transfers on vinylene (C=C) bonds 
 Main defect under inert atmosphere: LET  

AT high LET using SHI 

Trans-vinylenes are the 
predominant protective bond up to 
[C=C] ≈ 0.6 mol.kg-1 in PE, i.e. ≈        
10 MGy  
 
 

Protection less effective using SHI than     
g-rays 

In track recombination before 
migration 
Non-homogeneous radiation-
induced C=C bonds repartition using 
SHI 
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Perfect PE irradiated at high dose  

PE containing C=C bonds  
 

Inert atmosphere using SHI 

Ventura et al., J. Phys. Chem. B 120 (2016), 10367 
Ventura, PhD thesis (2013) 
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LET effect  
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Esters in the 
backbone 

Confirmation of LET effect on in-chain ester polymers 

↘ of G(H2) more important per ester unit using low LET irradiation 
At high LET, non-scavengeable energy trapped in ion tracks 
- Excited and ionized molecules concentration too high to allow migration 
- In-track recombinations 

 
Scavengeable energy fraction 

About ≈ 2/3 for g-rays <=> about ≈ 1/2 for SHI  
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LET and defects position effects 
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G(H2) ↘ with C=O and C=C bonds 

Energy transfers effective whatever the double bond type 
 

Radiation protection effect more effective at low LET than at high LET 

In-track radicals recombination 

Chang & LaVerne, J. Polym. Sci.: Part A: Polym. Chem. 38 (2000),1656 
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LET and defects position effects 
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G(H2) ↘ with C=O and C=C bonds 

Energy transfers effective whatever the double bond type 
 

Radiation protection effect more effective at low LET than at high LET 

In-track radicals recombination 
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LET and defects position effects 
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G(H2) ↘ with C=O and C=C bonds 

Energy transfers effective whatever the double bond type 
 

Radiation protection effect more effective at low LET than at high LET 

In-track radicals recombination 
 

Differences in PE with defects due to defects position  

Case for PE with C=C defects : defects in the backbone with lower G(H2) 
 

Chang & LaVerne, J. Polym. Sci.: Part A: Polym. Chem. 38 (2000),1656 
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Application for the industrial cases 
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Better radiation protection at low LET 
than under SHI 

Whatever the defect studied 
 

 
Two phenomena 

Ion-track density effect  
Non-homogeneous repartition of 
the defects  

PE irradiated under SHI and g-rays 

under oxidative atmosphere 
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Conclusion 



Conclusion 

In the deep underground repository context 
Energy transfers decrease the hydrogen release 
Positive effects on safety purpose 
- Up to now, G0(H2) ~ 4.10-7 mol.J-1 used in the nuclear safety cases  
 => Very conservative value 
Update possible with detailed explanations 
 
 

From a fundamental point of view 
Efficiency depends on the protective group of the material  
- Its nature 
- Its concentration 
- Its position (backbone or on side-chain) 
LET effect 
- Energy transfers probably less effective in the track core 
- Effect of the density and repartition of the protective bonds 
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Thank you for your attention 
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Gervais & Bouffard, Nucl. Instrum. Methods Phys. Res., Sect. B 88 (1994), 355 

Ion beams to simulate α irradiations ? 

Why SHI instead of α ? 

LET equivalent to radionuclides-emitted α  
Higher penetration range 

Homogeneous 

irradiation under several 

microns (case of PE) 
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Combined effects of position and LET 
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Esters in the 
backbone 

Side-chain ester 

In-chain defects more effective than side-chain ester 

1/3 energy scavenged by side-chain esters 
2/3 energy scavenged by esters in the backbone 
 => Same repartition than C-C transfers (2/3) and C-H transfers (1/3) in PE* 

 => 1/3 of non scavengeable energy  
 

In-chain defects 

Energy scavenged by in-chain effect ↘ when LET ↗ 
But part of energy migrates out of the ions tracks  
- Better ↘ with in-chain defects at high LET than with side-chain protection 

*Partridge, J. Chem. Phys. 52 (1970), 2485 
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