N. Aronszajn, Theory of Reproducing Kernels, Transactions of the American Mathematical Society, issue.3, p.68, 1950.

J. Bigot, R. Gouet, T. Klein, and A. López, Minimax convergence rate for estimating the Wasserstein barycenter of random measures on the real line, Journal of Optimization Theory and Applications, 2016.

C. Cannaméla, Apport des méthodes probabilistes dans la simulation du comportement sous irradiation du combustibleà particules, 2007.

S. Da-veiga, Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, vol.85, issue.7, p.12831305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00903283

M. De-lozzo and A. Marrel, New improvements in the use of dependence measures for sensitivity analysis and screening, Journal of Statistical Computation and Simulation, vol.86, issue.15, p.30383058, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01090475

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in industrial practice : a guide to quantitative uncertainty management, 2008.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf, Measuring statistical dependence with Hilbert-Schmidt norms, Algorithmic Learning Theory, vol.3734, p.6378, 2005.

B. Iooss, Revue sur l'analyse de sensibilité globale de modèles numériques, Journal de la Société Française de Statistique, vol.152, issue.1, p.325, 2011.

Y. Jiao and J. Vert, The Kendall and Mallows kernels for permutations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01679012

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schlkopf, and G. R. Lanckriet, Hilbert space embeddings and metrics on probability measures, Journal of Machine Learning Research, vol.11, p.15171561, 2010.

R. Veldhuis, The centroid of the symmetrical Kullback-Leibler distance, IEEE signal processing letters, vol.9, issue.3, p.9699, 2002.