Characterization of fresh EMPIrE and SEMPER FIDELIS plates with PVD-coated U(Mo) particles

To cite this version:
X. Iltis, H. Palancher, D. Drouan, N. Tarisien, F. Vanni, et al.. Characterization of fresh EMPIrE and SEMPER FIDELIS plates with PVD-coated U(Mo) particles. RRFM 2018, Mar 2018, Munich, Germany. cea-02339253

HAL Id: cea-02339253
https://hal-cea.archives-ouvertes.fr/cea-02339253
Submitted on 14 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Characterization of fresh EMPiRe and SEMPER FIDELIS plates with PVD-coated U(Mo) particles

X. Ilitis¹, H. Palancher¹, D. Drouan¹, N. Taritsien¹, F. Vanni², J. Allenou³, B. Stepnik², A. Leenaers³, S. Van den Berge³, I. Glagolenko⁴, D. Keiser⁴

¹ CEA, Dfen, deCer, Carolina, F-13108 Saint-Paul-lez-Durance, France
² FRAMATOME CERA, SPL, ZI Les Berludes, 54 avenue de la déportation, BP 114, F-62104 Romans-sur-Isère, France
³ SCK-CEN Nuclear Material Science Institute, Boerentang 200, 2400 Woel, Belgium
⁴ Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188, USA

CONTEXT AND GOAL OF THE STUDY
Two irradiation programs are currently in progress:
- EMPiRe, on mini-plates, in ATR reactor (USA),
- SEMPER FIDELIS, on full-size plates, in BR2 reactor (Belgium).

In both experiments, U(Mo)/Al plates are tested under aggressive irradiation conditions.

Seven fresh plates (5 EMPiRe ones and 2 SEMPER FIDELIS ones), manufactured with atomized U(Mo) particles from RAED, whether or not heat treated at 1000°C for Mo homogenization, all ZrN-coated by PVD, are examined mainly by SEM.

A particular attention is paid to the integrity of the ZrN coating and to the U(Mo) particles microstructure, in the different types of plates.

PLATES MAIN CHARACTERISTICS

<table>
<thead>
<tr>
<th>Plate designation</th>
<th>Mo homogenization</th>
<th>U(Mo) particles sphericity</th>
<th>ZrN coating thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP-717 (mini-plates)</td>
<td>No</td>
<td>Defined by the squared ratio between the width and the thickness</td>
<td>EMP-717</td>
</tr>
<tr>
<td>EMP-717 (full-size plates)</td>
<td>No</td>
<td>Defined by the squared ratio between the width and the thickness</td>
<td>EMP-717</td>
</tr>
</tbody>
</table>

EXPERIMENTAL DETAILS (for quantified results)
ZrN layer thickness:
- Measured by image analysis on 30 particles per plate
- Particles with continuous coatings
- 100 measurements per particle

Mo content analysis by EDS:
- On at least 15 different particles

SF-402 FULL-SIZE PLATE, MADE WITH AS-ATOMIZED PARTICLES

ZrN coating damages

SF-202 FULL-SIZE PLATE, MADE WITH HOMOGENIZED PARTICLES

ZrN coating damages

SF-202 FULL-SIZE PLATE, MADE WITH AS-ATOMIZED PARTICLES

ZrN coating damages

SF-202 FULL-SIZE PLATE, MADE WITH HOMOGENIZED PARTICLES

ZrN coating damages

ZrN particles sphericity:
- Related to the metallurgical state, in EMPiRe mini-plates (excepting EMP-189), systematically lower in SEMPER FIDELIS plates.
- Mean Mo content of U(Mo) particles: identical in all plates.

CONCLUSION
EMPiRe mini-plates and SEMPER FIDELIS full-size plates have very similar microstructural characteristics.

- Fuel core thickness and U(Mo) particles distribution: slightly more irregular in EMPiRe mini-plates.
- U(Mo) particles microstructure: similar in both types of plates, depending on the heat treatment.
- ZrN layers damages: 4 types identified in all plates:
 - Delaminations: preferentially observed in plates made with as-atomized particles, more marked in EMPiRe mini-plates.
 - Radial cracks: related to the layer thickness, which varies between 1 and 2 µm in both types of plates.
- Damages linked to contacts: high in all plates.
- Coating loss of adherence linked to powder oxidation: greater in plates made with homogenized particles, and especially in EMPiRe ones.