, Advanced Reactors Information System (ARIS), International Atomic Energy Agency

G. Gautier, Dispositif limiteur de débit inverse de fluide (in French), 1988.

V. Saul'ev, On the solution of some boundary value problems on high performance computers by fictitious domain method (in Russian), Siberian Math. Journal, vol.4, issue.4, pp.912-925, 1963.

L. Rukhovets, A remark on the method of fictive domains (in Russian), Differential Equations, vol.3, issue.4, pp.114-121, 1967.

S. Clerc, Numerical simulation of the Homogeneous Equilibrium Model for two-phase flows, Journal of Computational Physics, vol.161, issue.1, pp.354-375, 2000.

M. Grandotto and P. Obry, Calculs desécoulements diphasiques dans leséchangeurs par une méthode auxéléments finis (in French), Revue Européenne des Eléments Finis, vol.5, pp.53-74, 1996.

M. Grandotto and P. Obry, Steam generator two-phase-flow numerical simulation with liquid and gas momentum equations, Nuclear Science and Engineering, vol.151, pp.313-318, 2005.

M. Belliard and I. Ramière, Fictitious domain methods for two-phase flow energy balance computations in nuclear components, International Journal for Numerical Methods in Fluids, vol.68, issue.8, pp.939-957, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00604069

G. S. Lellouche and B. A. Zolotar, Mechanistic model for predicting two-phase void fraction for water in vertical tubes, channels and rod bundles, Special Report, p.2246, 1982.

N. Zuber and J. Findlay, Average volumetric concentration in two-phase flow systems, J. Heat Transfer, vol.87, issue.4, pp.453-468, 1965.

H. Schlichting, Boundary layer theory, 1968.

P. Gresho and S. Chan, On the theory of semi implicit projection methods for viscous incompressible flow and its implementation via finite element method that also introduces a nearly consistent matrix. i, theory, International Journal for Numerical Methods in Fluids, vol.11, issue.5, pp.587-620, 1990.

A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer methods in Applied Mechanics and Engineering, pp.32-33, 1982.

M. Hyman, Non-iterative numerical solution of boundary-value problems, Applied Scientific Research, vol.2, issue.1, pp.325-351, 1952.

I. Ramière, P. Angot, and M. Belliard, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.766-781, 2007.

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.

I. Ramière, Convergence analysis of the Q1-finite element method for elliptic problems with non-boundary-fitted meshes, International Journal for Numerical Methods in Engineering, vol.75, issue.9, pp.1007-1052, 2008.

C. Introïni, M. Belliard, and C. Fournier, A second order Penalized Direct Forcing for hybrid Cartesian/Immersed Boundary flow simulations, Computers & Fluids, vol.90, pp.21-41, 2014.

M. Belliard, Numerical modeling of an in-vessel flow limiter using an Immersed Boundary Approach, Nuclear Engineering and Design, vol.90, pp.21-41, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02048208

I. Idel'cik, Mémento des pertes de charge (in French). 1999th Edition, Collection de la Direction des Etudes et Recherches d'Electricité de France, Eyrolles, 1960.