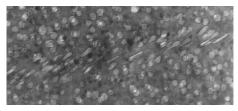


## COALESCENCE CRITERIA FOR POROUS MATERIALS WITH SMALL-SCALE VOIDS



Jérémy HURE<sup>1</sup>, Valentin GALLICAN<sup>1</sup>, Kim Lau NIELSEN<sup>2</sup>

<sup>1</sup>Department of Materials for Nuclear Applications French Alternative Energies and Atomic Energy Commission

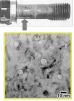
<sup>2</sup>Department of Mechanical Engineering - Section of Solid Mechanics Technical University of Denmark (DTU)

 $16^{th}$  European Mechanics of Materials Conference Nantes, March $26^{th}{-}28^{th},\,2018$ 

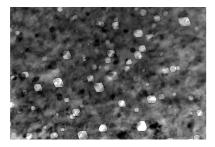
#### Some examples of porous materials with small-scale voids

### From the Nuclear Industry: Irradiated materials





Avg. size = 8.6 nm Density = 0.61 x 10<sup>22</sup> m<sup>-3</sup> Swelling = 0.20%



PWR, (Edwards et al., 2003)

Fast reactor, (Garner et al., 2002)

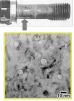
### Austenitic stainless steels irradiated by high-energy particles:

- Creation of **crystalline defects** in the microstructure
- Under specific conditions: **Nanovoids** (5nm  $\leq R \leq 100$ nm)

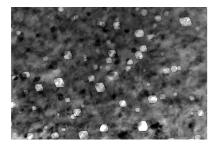
### Some examples of porous materials with small-scale voids

### From the Nuclear Industry: Irradiated materials





Avg. size = 8.6 nm Density = 0.61 x  $10^{22}$  m<sup>-3</sup> Swelling = 0.20%



PWR, (Edwards et al., 2003)

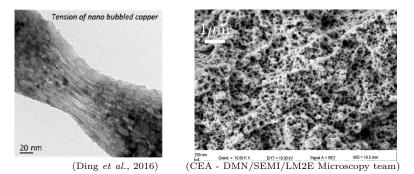
Fast reactor, (Garner et al., 2002)

### Austenitic stainless steels irradiated by high-energy particles:

- Creation of **crystalline defects** in the microstructure
- Under specific conditions: **Nanovoids** (5nm  $\leq R \leq 100$ nm)

### The material becomes nanoporous: Behavior under stress ?

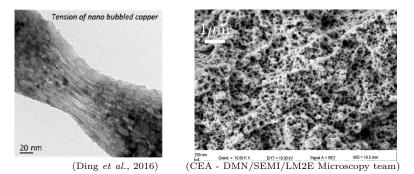
### From the Nuclear Industry: Irradiated materials



**Nanovoids** are observed to contribute to the fracture of the material through classical mechanisms of ductile fracture:

- Void growth to coalescence
- Small dimples on fracture surfaces

### From the Nuclear Industry: Irradiated materials



**Nanovoids** are observed to contribute to the fracture of the material through classical mechanisms of ductile fracture:

- Void growth to coalescence
- Small dimples on fracture surfaces

### Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects

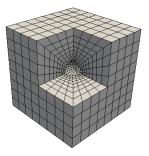
With interface stresses (Dormieux & Kondo, 2010)

Void/Matrix interface  $\Rightarrow$  2D plasticity

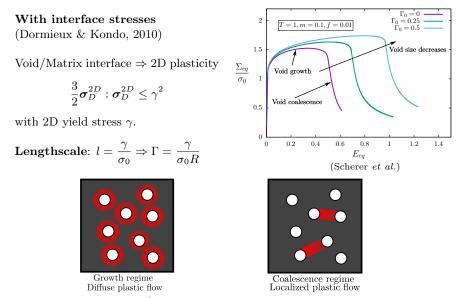
$$\frac{3}{2}\boldsymbol{\sigma}_D^{2D}:\boldsymbol{\sigma}_D^{2D}\leq\gamma^2$$

with 2D yield stress  $\gamma$ .

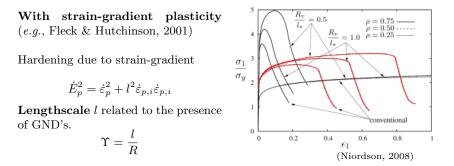
**Lengthscale**: 
$$l = \frac{\gamma}{\sigma_0} \Rightarrow \Gamma = \frac{\gamma}{\sigma_0 R}$$



Some porous unit-cell simulations accounting for void size effects



Some porous unit-cell simulations accounting for void size effects



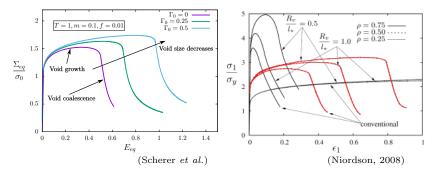
For both models: qualitatively similar observations ...

- Hardening
- Delayed softening

... as void size decreases down to the characteristic lengthscale.

### TOWARDS HOMOGENIZED MODELS OF NANOPOROUS MATERIALS

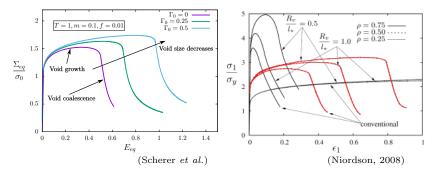
Some porous unit-cell simulations accounting for void size effects



Analytical homogeneized yield criteria for porous materials with size effects, under the assumption of isotropy:

 Growth regime: (Wen *et al.*, 2005), (Monchiet & Bonnet, 2013), (Dormieux & Kondo, 2010), (Monchiet & Kondo, 2013), ...

Some porous unit-cell simulations accounting for void size effects



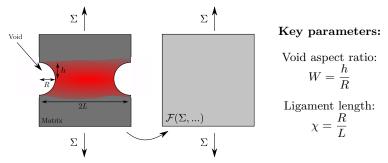
Analytical homogeneized yield criteria for porous materials with size effects, under the assumption of isotropy:

 Growth regime: (Wen *et al.*, 2005), (Monchiet & Bonnet, 2013), (Dormieux & Kondo, 2010), (Monchiet & Kondo, 2013), ...

Coalescence yield criteria showing size effects are needed

J. Hure

 $\circ~$  Relevant for large porosity: localization of plastic flow between voids



Thomason analysis (1985) to be re-done accounting for:

- Interface stresses
- Strain-gradient plasticity

Main assumption: Periodic arrangement of voids

Yield criterion for nanoporous material

$$\mathcal{F}(\boldsymbol{\Sigma},...)$$

## Homogenisation and limit analysis (Rigid-non hardening solid)

• RVE homogenisation with appropriate boundary conditions

$$\boldsymbol{\Sigma} = \frac{1}{vol\Omega} \int_{\Omega} \boldsymbol{\sigma} \, d\Omega \qquad \qquad \mathbf{D} = \frac{1}{vol\Omega} \int_{\Omega} \mathbf{d} \, d\Omega$$

• Limit analysis (Dormieux & Kondo, 2010)

$$\boldsymbol{\Sigma}: \mathbf{D} \leq \Pi(\mathbf{D}) = \inf_{\underline{v} \in \kappa(\mathbf{D})} \frac{1}{vol(\Omega)} \left[ \int_{\Omega_m} \sigma_0 d_{eq}^{VM} \, dV + \int_{S_{int}} \gamma d_{S,eq}^{VM} \, dS \right]$$

where  $\kappa(\mathbf{D})$  is a subset of velocity field compatible with  $\mathbf{D}$  and verifying the property of incompressibility

• Effective yield criterion for porous RVE

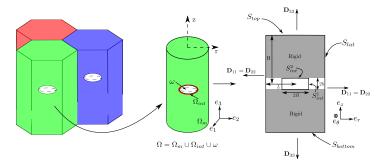
$$\boldsymbol{\Sigma} = \frac{\partial \Pi(\mathbf{D})}{\partial \mathbf{D}}$$

This theoretical approach stands on the *choice* of a *trial velocity field*  $\underline{v}$ 

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

### Geometry and boundary conditions

- Cylindrical void in cylindrical unit-cell
- Axisymmetric loading conditions



$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

Constitutive equations: Rigid / Perfect plasticity

• Matrix: Isotropic von Mises criterion (3D yield stress  $\sigma_0$ )

$$\frac{3}{2}\boldsymbol{\sigma}_D:\boldsymbol{\sigma}_D\leq \sigma_0^2$$

• Void/Matrix interface: Isotropic von Mises criterion (2D yield stress  $\gamma$ )

$$\frac{3}{2}\boldsymbol{\sigma}_D^{2D}:\boldsymbol{\sigma}_D^{2D}\leq\gamma^2$$

Homogenisation and limit analysis

$$\Pi(\mathbf{D}) = \inf_{\underline{v} \in \kappa(\mathbf{D})} \frac{1}{vol(\Omega)} \left[ \int_{\Omega_m} \sigma_0 d_{eq}^{VM} \, dV + \int_{S_{int}} \gamma d_{S,eq}^{VM} \, dS \right]$$

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

Trial velocity field kinematically admissible, incompressible

• Proposed by (Keralavarma & Chockalingham, 2016):

$$\begin{cases} v_r^{KC}(r,z) = \frac{3HD_{33}}{4h} \left(1 - \frac{z^2}{h^2}\right) \left(\frac{L^2}{r} - r\right) \\ v_z^{KC}(r,z) = \frac{3HD_{33}}{2h} \left(z - \frac{z^3}{3h^2}\right) \end{cases} \xrightarrow{\mathbf{R}} \left( \frac{z}{r} - \frac{z}{h^2} \right) \xrightarrow{\mathbf{R}} \left($$

• Other trial velocity fields are possible (see (Morin *et al.*, 2015)) J. Hure  $16^{th}$  European Mechanics of Materials Conference

$$\mathcal{F}(\mathbf{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

Estimation of the coalescence stress (isotropic, axisymmetric loading):

$$\begin{split} \left(\frac{\Sigma_{33}}{\sigma_0}\right)_c &= \sqrt{\frac{6}{5}} \left[ b \ln \frac{1}{\chi^2} + \sqrt{b^2 + 1} - \sqrt{b^2 + \chi^4} + b \ln \left(\frac{b + \sqrt{b^2 + \chi^4}}{b + \sqrt{b^2 + 1}}\right) \right] \\ &+ \frac{2\Gamma}{\sqrt{3}} \sqrt{1 + 3\chi^4} \\ &\text{with } b^2 = \frac{1}{3} + \alpha \frac{1}{3} \frac{5}{8W^2 \chi^2}, \ \alpha = [1 + \chi^2 - 5\chi^4 + 3\chi^6]/12 \end{split}$$

Can be extended to account for anisotropy and shear:

 $\Rightarrow$  see (Gallican & Hure, 2017)

J. Hure

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

Estimation of the coalescence stress (isotropic, axisymmetric loading):

$$\begin{split} \left(\frac{\Sigma_{33}}{\sigma_0}\right)_c &= \sqrt{\frac{6}{5}} \left[ b \ln \frac{1}{\chi^2} + \sqrt{b^2 + 1} - \sqrt{b^2 + \chi^4} + b \ln \left(\frac{b + \sqrt{b^2 + \chi^4}}{b + \sqrt{b^2 + 1}}\right) \right] \\ &+ \frac{2\Gamma}{\sqrt{3}} \sqrt{1 + 3\chi^4} \\ &\text{with } b^2 = \frac{1}{3} + \alpha \frac{1}{3} \frac{5}{8W^2 \chi^2}, \ \alpha = [1 + \chi^2 - 5\chi^4 + 3\chi^6]/12 \end{split}$$

Can be extended to account for anisotropy and shear:

 $\Rightarrow$  see (Gallican & Hure, 2017)

## How good is this analytical coalescence criterion ?: $\Rightarrow$ Comparison to Numerical limit-analysis

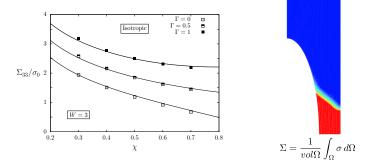
J. Hure

#### HOMOGENIZATION OF POROUS MATERIAL ACCOUNTING FOR INTERFACE STRESSES

Yield criterion in the coalescence regime for nanoporous material

$$\mathcal{F}(\mathbf{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

• **Numerical limit-analysis simulations**: Standard finite element simulations, coalescence boundary conditions, no geometry update, perfectly plastic von Mises matrix and interface



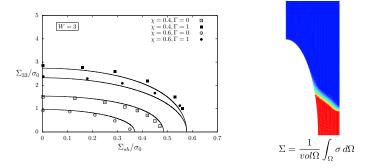
16<sup>th</sup> European Mechanics of Materials Conference

#### HOMOGENIZATION OF POROUS MATERIAL ACCOUNTING FOR INTERFACE STRESSES

Yield criterion in the coalescence regime for nanoporous material

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

• **Numerical limit-analysis simulations**: Standard finite element simulations, coalescence boundary conditions, no geometry update, perfectly plastic von Mises matrix and interface



- ${\ensuremath{\boxtimes}}$  for elongated spheroidal voids  $W\gg 1$
- ${\ensuremath{\boxtimes}}$  for spherical voids  $W\sim 1$  with additional fitting parameter

J. Hure

Yield criterion for porous strain-gradient material

 $\mathcal{F}(\boldsymbol{\Sigma},...)=0$ 

## Similar framework as for the case of interface stresse

 $\circ~{\bf Fleck}~\&~{\bf Willis}$  version of strain gradient plasticity

$$\dot{E}_p^2 = \dot{\varepsilon}_p^2 + L_D^2 \dot{\varepsilon}_{ij,k}^2 \dot{\varepsilon}_{ij,k}^2$$

• Extension of Hill-Mandel lemma (Azizi et al., 2014):

$$\boldsymbol{\Sigma}: \mathbf{D} = \frac{1}{vol\Omega} \int_{\partial\Omega} [T_i v_i + t_{ij} d_{ij}] dS$$

for periodic boundary conditions

• Extension of Limit analysis theorem (Fleck & Willis, 2009)

$$\boldsymbol{\Sigma}: \mathbf{D} = \inf_{\underline{v} \in \kappa(\mathbf{D})} \frac{1}{vol(\Omega)} \int_{\Omega} \sigma_0 \sqrt{\frac{2}{3} d_{ij} d_{ij} + L_D^2 d_{ij,k} d_{ij,k}} \, dV$$

where  $\kappa(\mathbf{D})$  is a subset of velocity field compatible with  $\mathbf{D}$  and verifying the property of incompressibility

J. Hure

10/15

#### HOMOGENIZATION OF POROUS MATERIAL WITH STRAIN-GRADIENT PLASTICITY

Yield criterion in the coalescence regime for porous strain-gradient material  $% \mathcal{T}_{\mathrm{reg}}$ 

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

Trial velocity field (Morin et al., 2015)

$$\begin{cases} v_r^M(r,z) = \frac{HD_{33}}{h^2} (h-z) \left(\frac{L^2}{r} - r\right) \\ v_z^M(r,z) = \frac{HD_{33}}{h^2} \left(2hz - z^2\right) \end{cases}$$

Estimation of the coalescence stress (isotropic, axisymmetric loading):

$$\left(\frac{\Sigma_{33}}{\sigma_0}\right)_c = \frac{2}{W^2 \chi^2} \int_0^{W\chi} dz \int_{\chi}^1 \sqrt{\alpha(r,z) + L_D^2 \beta(r,z)} r dr$$
$$\alpha(r,z) = \frac{4}{3} (W\chi - z)^2 \left(\frac{1}{r^4} + 3\right) + \frac{1}{3} \left(\frac{1}{r} - r\right)^2$$

and  $\beta(r,z) = \frac{16}{r^6} (W\chi - z)^2 + \frac{3}{r^4} + 7$ 

J. Hure

with

16<sup>th</sup> European Mechanics of Materials Conference

11/15

#### HOMOGENIZATION OF POROUS MATERIAL WITH STRAIN-GRADIENT PLASTICITY

Yield criterion in the coalescence regime for porous strain-gradient material  $% \mathcal{T}_{\mathrm{reg}}$ 

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

Trial velocity field (Morin et al., 2015)

$$\begin{cases} v_r^M(r,z) = \frac{HD_{33}}{h^2} (h-z) \left(\frac{L^2}{r} - r\right) \\ v_z^M(r,z) = \frac{HD_{33}}{h^2} \left(2hz - z^2\right) \end{cases}$$

Estimation of the coalescence stress (isotropic, axisymmetric loading):

$$\left(\frac{\Sigma_{33}}{\sigma_0}\right)_c = \frac{2}{W^2 \chi^2} \int_0^{W\chi} dz \int_{\chi}^1 \sqrt{\alpha(r,z) + L_D^2 \beta(r,z)} r dr$$

with

$$\alpha(r,z) = \frac{4}{3} (W\chi - z)^2 \left(\frac{1}{r^4} + 3\right) + \frac{1}{3} \left(\frac{1}{r} - r\right)^2$$
  
$$\beta(r,z) = \frac{16}{r^6} (W\chi - z)^2 + \frac{3}{r^4} + 7$$

and

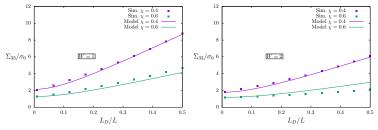
# How good is this analytical coalescence criterion ?: $\Rightarrow$ Comparison to Numerical limit-analysis

J. Hure

$$\mathcal{F}(\boldsymbol{\Sigma}, \sigma_0, \gamma, ...)$$
 or  $\Sigma_{33} = \mathcal{G}(\sigma_0, \gamma, ...)$ 

## Numerical limit-analysis simulations:

- Cubic-unit cell with pediodic boundary conditions
- Coalescence boundary conditions
- Fleck-Willis strain-gradient material without hardening
- Coalescence boundary conditions



The model **captures well** the increase of coalescence stress as  $L_D$  increases

 $\circ~$  One parameter needed to account for unit-cell shapes (cylindrical vs. cubic)

 $J. \ Hure$ 

Accounting for interface stresses:

$$\begin{split} \left(\frac{\Sigma_{33}}{\sigma_0}\right)_c &= \sqrt{\frac{6}{5}} \left[ b \ln \frac{1}{\chi^2} + \sqrt{b^2 + 1} - \sqrt{b^2 + \chi^4} + b \ln \left(\frac{b + \sqrt{b^2 + \chi^4}}{b + \sqrt{b^2 + 1}}\right) \right] \\ &+ \frac{2\Gamma}{\sqrt{3}} \sqrt{1 + 3\chi^4} \end{split}$$

Accounting for strain-gradient plasticity (Fleck-Willis):

$$\left(\frac{\Sigma_{33}}{\sigma_0}\right)_c = \frac{2}{W^2 \chi^2} \int_0^{W\chi} dz \int_{\chi}^1 \sqrt{\alpha(r,z) + L_D^2 \beta(r,z)} r dr$$

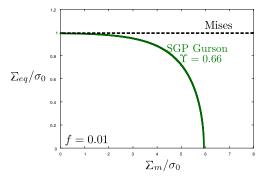
From coalescence criterion to yield criterion in the coalescence regime (axisymmetric loading conditions)

$$\mathcal{F}(\mathbf{\Sigma}) = \frac{\sum_{eq}}{\sigma_0} + \frac{3}{2} \frac{\sum_m}{\sigma_0} - \frac{3}{2} \left(\frac{\sum_{33}}{\sigma_0}\right)_c \le 0$$

### COALESCENCE CRITERION FOR POROUS MATERIALS WITH SMALL-SCALE VOIDS

A hybrid yield criterion for porous material exhibiting size effects:

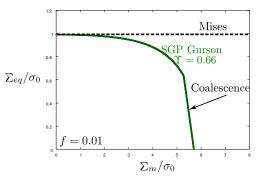
• Growth criterion  $\mathcal{F}_g(\mathbf{\Sigma}, \boldsymbol{\alpha}, \Gamma) \leq 0$ 



### COALESCENCE CRITERION FOR POROUS MATERIALS WITH SMALL-SCALE VOIDS

A hybrid yield criterion for porous material exhibiting size effects:

- Growth criterion  $\mathcal{F}_g(\mathbf{\Sigma}, \boldsymbol{\alpha}, \Gamma) \leq 0$
- Coalescence criterion  $\mathcal{F}_c(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \Gamma) \leq 0$

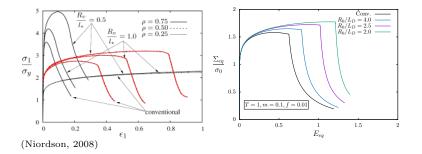


## Complete homogenized model:

- Adding evolution laws
- Numerical implementation of constitutive equations

Numerical implementation of the constitutive equations:

• Strain-gradient plasticity: qualitative agreement to be further validated



### Hardening and delayed softening observed as $R/L_D$ decreases

• Interface stresses: Talk of J.M. Scherer)