Activity Coefficients from Vapor-Liquid Interfaces: A Molecular Dynamics Approach for Separation Chemistry
M. Bley, M. Duvail, P. Guilbaud, Jean-François Dufrêche

To cite this version:

HAL Id: cea-02338585
https://hal-cea.archives-ouvertes.fr/cea-02338585
Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Activity Coefficients from Vapor-Liquid Interfaces: A Molecular Dynamics Approach for Separation Chemistry

Michael Bleya, Magali Duvaila, Philippe Guilbaudb, and Jean-François Dufrêchea

aInstitute for Separation Chemistry in Marcoule (ICSM), CEA, CNRS, ENSCM, Univ Montpellier, BP 17171, F-30207 Bagnols-sur-Cèze
bCEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes (SPDS/LILA), BP 17171, F-30207 Bagnols-sur-Cèze

Context

- Understanding solvent extraction – Recalling of rare earth elements and spent nuclear fuels
- Hydrated ions in the aqueous phase
- Organic phases: Aggregation of DMDOHEMA in the organic phase
- Extractant aggregates in the organic phase
- The equilibrium constant K^* describes the extraction process and is given by the Mass Action Law
- Aqueous electrolyte solution
- Organic solvent phase
- Activity coefficients
- A multiaspect approach provides mesoscopic thermodynamic properties

Methods and concepts

- Measuring activity and the vapor pressure
 - Solvent flow: Vapor pressure of the pure solvent always higher than of a mixture
 - Ideal case: Solvent vapor pressure by Raoult’s law
 - Otherwise: Aggregation increases, dissociation decreases solvent vapor pressure and thus activity

Aqueous dysprosium nitrate Dy(NO$_3$)$_3$ solutions (2)

Organic phases – Binary Mixtures of DMDOHEMA and \textit{n}-heptane

- Molecular dynamics simulation of liquid-vapor equilibria of organic solvent phases containing:
- Pure solvent
- Extractant
- Water
- Ionic species
- Increasing computational cost
- Aggregation of DMDOHEMA in the organic phase relies on the availability of water5
- Solvent activities in binary mixtures of \textit{n}-heptane and DMDOHEMA show ideal behavior and follow Raoult’s law in good agreement up to a high extractant concentration
- Attractive and repulsive interactions in the mixtures cancel out

References

Outlook and conclusion

- Aqueous salt solutions: Results from molecular dynamics simulation are in good agreement with experimental data for different nitrate salts. This approach can be used for the validation of force fields for MD simulation with respect to thermodynamic properties.
- Organic Phases: Method has been successfully applied on binary mixtures (\textit{n}-heptane and DMDOHEMA, but also ethanol and water4)). Allows accessing more complex organic solvent phases containing water and ionic species.
- Simulation of activity coefficients of complex solutions with volatile solvents for understanding solvent extraction

Acknowledgements

This work was made possible thanks to the high performance computing facilities of TGC/CCRT and the computing center of CEA Marcoule.