Activity Coefficients from Vapor-Liquid Interfaces: A Molecular Dynamics Approach for Separation Chemistry
M. Bley, M. Duvail, Philippe Guilbaud, Jean-François Dufrêche

To cite this version:

HAL Id: cea-02338585
https://hal-cea.archives-ouvertes.fr/cea-02338585
Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Activity Coefficients from Vapor-Liquid Interfaces: A Molecular Dynamics Approach for Separation Chemistry

Michael Bley\(^a\), Magali Duval\(^a\), Philippe Guibal\(^b\), and Jean-François Dufrêche\(^a\)

\(^a\) Institute for Separation Chemistry in Marcoule (ICSM), CEA, CNRS, ENSCM, Univ Montpellier, BP 17171, F-30207 Bagnols-sur-Cèze
\(^b\) CEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes (SPDS/LILA), BP 17171, F-30207 Bagnols-sur-Cèze

\(p_2\): Vapor pressure of pure solvent

Methods and concepts

- **Hydrated ions in the aqueous phase**
- **Extractant aggregates in the organic phase**
- **Aqueous electrolyte solution**
- **Organic solvent phase**

Context

- Understanding solvent extraction – Recycling of rare earth elements and spent nuclear fuels
- Ideal case: Solvent vapor pressure
- Molecular dynamics
- 1982
- Controlling the error of the method
- Exchange
- The error of the method
- Vapor
- of
- The liquid
- Simulation of activity coefficients of
- Marcoule
- Vapor
- A
- (SPDS/LILA), BP 17171, F
- Solvent flow
- Activity coefficient
- Attractive and repulsive interactions in the mixtures cancel out
- computing
- Organic Phases:
- and
- possible
- the
- Montpellier
- Meridiano,
- O
- made
- 2017
- Rard
- Extr
- concentration
- high
- (5
- and DMDOHEMA show ideal behavior
- Otherwise:
- relation
- Processes
- Aqueous salt solutions:
- law
- Molecular Dynamics using
- Aggregation of DMDOHEMA in the
- Equilibria
- in Marcoule (ICSM, CEA
- 2018
- Michaelbley@outlook.com
- michael.bley@cea.fr

Aqueous dysprosium nitrate \(\text{Dy(NO}_3)_3\) solutions

- Water activity \(a_W\)
- Osmotic coefficient \(\phi_W\)
- Activity coefficient \(Y_E\)

Organic phases – Binary Mixtures of DMDOHEMA and \(n\)-heptane

- Molecular dynamics simulation of liquid-vapor equilibria of organic solvent phases containing:
- Pure solvent
- Extractant
- Water
- Ionic species
- Increasing computational cost
- Aggregation of DMDOHEMA in the organic phase relies on the availability of water
- \(\lambda\): Time of flight
- \(\sigma_0(t)\): Relative error of the method
- \(a_{SOL}\): Solvent activity

References

Outlook and conclusion

- **Aqueous salt solutions**: Results from molecular dynamics simulation are in good agreement with experimental data for different nitrate salts. This approach can be used for the validation of force fields for MD simulation with respect to thermodynamic properties.
- **Organic Phases**: Method has been successfully applied on binary mixtures (\(n\)-heptane and DMDOHEMA, but also ethanol and water): Allows accessing more complex organic solvent phases containing water and ionic species.
- **Simulation of activity coefficients of complex solutions with volatile solvents for understanding solvent extraction**

Acknowledgements

This work was made possible thanks to the high performance computing facilities of TGDC/CCRT and the computing center of CEA Marcoule.