Structural study of lanthanum aluminoborate glasses combining molecular dynamics, nuclear magnetic resonance and neutron diffraction <u>Erwan Chesneau</u>¹, Thibault Charpentier¹, Daniel Caurant², Rodolphe Pollet¹, Odile Majérus², Laurent Cormier³ - 1) NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay 91191 Gif-sur-Yvette France - 2) IRCP, Chimie ParisTech 75231 Paris France - 3) IMPMC, Université Pierre et Marie Curie 75252 Paris Key words: solid state NMR, molecular dynamics, borate glasses, DFT, Structure factor In this work, we investigate the structure and properties of $(1-x)LaB_3O_6$ - xAI_2O_3 glasses ($x\le0.375$) using solid state NMR and neutron diffraction combined with molecular dynamics simulations. This study aims at understanding the mechanism of aluminium oxide incorporation in lanthanum metaborate glass (LaB_3O_6) [1] and its impact on structural features. 11 B and 27 Al NMR experiments have been performed to obtain the atomic speciation of boron (BO₃ and BO₄) and aluminium (AlO_{4,5,6}). Two samples were enriched with oxygen-17 to obtain the BO, NBO population and advanced 2D through-bond heteronuclear correlation (17 O- 11 B, 17 O- 27 Al) was performed to highlights the distribution of NBO on the BO_x and AlO_x structural units, whereas 11 B- 27 Al 2D NMR revealed their connectivity. Figure 1: Left panel: ¹¹B MAS NMR spectra at 18.8T and 11.7T; middle panel: J-HMQC ¹¹B{¹⁷O} spectra at 11.7T; right panel: ¹⁷O MAS NMR spectra at 11.7T However, concerning superstructural units, more precise information are difficult to extract because of broad NMR shift distribution due to the amorphous structure of the glass. We therefore perform Molecular Dynamics (MD) simulations. As shown in previous studies [2], classical MD (based on empirical potential) cannot reproduce superstructural units in contrast to ab-initio MD (aiMD). Nevertheless, aiMD is an expensive computational time method and is therefore limited in the quenching rate so that too much liquid like structures are generated. In order to overcome these limitations, a Hybrid Reverse Monte Carlo modelling approach has been developed accounting for all constraints provided by NMR, in addition to the neutron and X-ray structure factors to converge into stable structures answering to all experimental data. - [1] D. S. Pytalev, D. Caurant, O. Majérus, H. Trégouët, T. Charpentier, and B. N. Mavrin, « Structure and crystallization behavior of La₂O₃.3B₂O₃ metaborate glasses doped with Nd³⁺ or Eu³⁺ ions », *J. Alloys Compd.*, vol. 641, p. 43-55, 2015. - [2] A Takada, C R A Catlow and G D Price, « Computer modeling of B₂O₃. II. Molecular dynamics simulations of vitreous structures », *J. Phys. Condens. Matter*, vol. 7, n° 46, p. 8693, 1995. ^{*}erwan.chesneau@cea.fr