X. Yu, Y. Li, C. Zhang, H. Liu, J. Liu et al.,

Q. Zhang, Q. Xiang, and . Chen, Culturable heavy metal-resistant and plant growth 598 promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS, vol.599, p.106618, 2014.

C. Saha, G. Mukherjee, P. Agarwal-banka, and A. Seal, A consortium of non-rhizobial 601 endophytic microbes from Typha angustifolia functions as probiotic in rice and 602 improves nitrogen metabolism, Plant Biol, vol.18, pp.938-946, 2016.

S. Mahieu, J. Escarré, B. Brunel, A. Méjamolle, S. Soussou et al.,

. Cleyet-marel, Soil nitrogen balance resulting from N fixation and rhizodeposition by 605 the symbiotic association Anthyllis vulneraria/Mesorhizobium metallidurans grown in 606 highly polluted Zn, Pb and Cd mine tailings, Plant Soil, vol.375, pp.175-188, 2014.

Y. E. Navarro-noya, E. Hernández-mendoza, J. Morales-jiméneza, and J. ,

C. Martínez-romero and . Hernández-rodríguez, Isolation and characterization of 609 nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing 610 on mine tailings, Appl Soil Ecol, vol.62, pp.52-60, 2012.

A. S. Sánchez-lópez, S. Thijs, B. Beckers, M. C. González-chávez, N. Weyens et al.,

J. Carrillo-gonzález and . Vangronsveld, Community structure and diversity of 613 endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila 614 growing on metal mine residues, Plant Soil, pp.51-66, 2017.

N. De-la-torre-ruiz, V. M. Ruiz-valdiviezo, C. I. Rincon-molina, and M. Rodriguez, , p.616

C. Mendiola, F. A. Arias-castro, H. Gutierrez-miceli, and R. Palomeque-dominguez,

. Rincon-rosales, Effect of plant growth-promoting bacteria on the growth and fructan 618 production of Agave americana L, Braz J Microbiol, vol.47, pp.587-96, 2016.

L. Chen, S. Luo, J. Chen, Y. Wan, X. Li et al., A comparative analysis of 620 endophytic bacterial communities associated with hyperaccumulators growing in mine 621 soils, Environ Sci Pollut Res Int, vol.21, pp.7538-7585, 2014.

G. H. Huang, H. H. Tian, H. Y. Liu, X. W. Fan, Y. Liang et al., Characterization of 623 plant-growth-promoting effects and concurrent promotion of heavy metal 624 accumulation in the tissues of the plants grown in the polluted soil by Burkholderia 625 strain LD-11, Int J Phytoremediation, vol.15, pp.991-1009, 2013.

M. P. Mcleod, R. L. Warren, W. W. Hsiao, N. Araki, M. Myhre et al.,

W. Miyazawa, A. L. Wong, D. Lillquist, M. Wang, H. Dosanjh et al., , p.628

R. D. Morin, G. Yang, J. M. Stott, J. E. Schein, H. Shin et al., , p.629

M. A. Marra, S. J. Jones, R. Holt, F. S. Brinkman, K. Miyauchi et al.,

W. W. Davies, L. D. Mohn, and . Eltis, The complete genome of Rhodococcus sp. RHA1 631 provides insights into a catabolic powerhouse, Proc Natl Acad Sci U S A, vol.103, pp.15582-15587, 2006.

H. Moreira, S. I. Pereira, A. P. Marques, A. O. Rangel, and P. M. Castro, , p.634

, Mine land valorization through energy maize production enhanced by the application 635 of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, p.636

, Sci Pollut Res, pp.6940-6950, 2015.

L. E. De-bashan, J. Hernandez, Y. Bashan, and R. M. Maier, Bacillus pumilus ES4: 638 Candidate plant growth-promoting bacterium to enhance establishment of plants in 639 mine tailings, Environ Exp Bot, vol.69, pp.343-352, 2010.

W. Liu, C. Yang, S. Shi, and W. Shu, Effects of plant growth-promoting bacteria isolated 641 from copper tailings on plants in sterilized and non-sterilized tailings, Chemosphere, vol.642

L. Benidire, S. I. Pereira, P. M. Castro, and A. Boularbah, Assessment of plant growth 644 promoting bacterial populations in the rhizosphere of metallophytes from the Kettara 645 mine, Environ Sci Pollut Res, vol.23, pp.21751-21765, 2016.

E. Tamburini, S. Sergi, L. Serreli, G. Bacchetta, S. Milia et al., , p.647

, Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West 648

. Sardinia, Bull Environ Contam Toxicol, vol.98, pp.310-316, 2017.

S. Azabou, T. Mechichi, and S. Sayadi, Sulfate reduction from phosphogypsum using a 650 mixed culture of sulfate-reducing bacteria, Int Biodeterior Biodegrad, vol.56, p.236, 2005.

M. Martins, M. L. Faleiro, R. J. Barros, A. R. Veríssimo, M. A. Barreiros et al., , p.653

, Characterization and activity studies of highly heavy metal resistant sulphate-reducing 654 bacteria to be used in acid mine drainage decontamination, J Hazard Mater, vol.166, p.655, 2009.

M. S. Marvi, A. A. Pourbabaee, H. A. Alikhani, A. Haidari, and Z. Manafi, The 657 diversity of sulfur-oxidizing bacterial populations at an Iranian copper mine and the 658 surrounding agricultural soils, Appl ecol env res, vol.14, pp.509-533, 2016.

W. Sajjad, T. M. Bhatti, F. Hasan, S. Khan, M. Badshah et al., 660 Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and 661 black shale samples, Pak J Bot, vol.48, pp.1253-1262, 2016.

J. S. Benedetto, S. K. Almeida, H. A. Gomes, R. F. Vazoller, and A. C. Ladeira, , p.663

, Monitoring of sulfate-reducing bacteria in acid water from uranium mines, Minerals, vol.664, pp.1341-1343, 2005.

S. Choudhary and P. Sar, Characterization of a metal resistant Pseudomonas sp. isolated 666 from uranium mine for its potential in heavy metal (Ni 2+ , Co 2+ , Cu 2+ , and Cd 2+ ) 667 sequestration, Bioresour Technol, vol.100, pp.2482-92, 2009.

N. Hamamura, K. Fukushima, and T. Itai, Identification of antimony-and arsenic-669 oxidizing bacteria associated with antimony mine tailing, Microbes Environ, vol.28, p.670, 2013.

P. Chang, K. E. Gerhardt, X. D. Huang, X. M. Yu, B. R. Glick et al.,

. Greenberg, Plant growth-promoting bacteria facilitate the growth of barley and oats in 673 salt-impacted soil: implications for phytoremediation of saline soils, Int J 674 Phytoremediation, vol.16, pp.1133-1180, 2014.