H. Nmr, 400 MHz, CD2Cl2, 223K): 8.90 (ddd, J = 20.1 Hz, J = 7.5 Hz, J = 2 Hz, 1H), 8.22-8.13 (m, 2H), 8.09-8.02 (m, 2H), 7.94 (t, J = 8.1 Hz, 2H), 7.76-7.69 (m, 2H), 7.47-7.43 (m, 1H), 7.36-7.27 (m, 2H). 13 C NMR

. Hz, 136.6 (d, J = 10.5 Hz), 136.1 (d, J = 10.4 Hz), 135.6 (d, J = 20.5 Hz), 135.3 (d, J = 3.5 Hz), 135.1 (d, J = 3.7 Hz), vol.131

. Hz, 119.0 (d, J = 6.0 Hz). 31 P NMR (162 MHz, CD2Cl2) ? +51.6. HRMS (ESI, CH3OH / CH2Cl2 : 7/3) [M+Na] + (C20H12OClBr2PNa) m/z calcd : 514.85732 m/z Found : 514.8572. Anal. Calcd for C20H12Br2ClOP: found : C, 48, p.57

, NaH (129 mg, 3.235 mmol, 4 eq) is dissolved in 40 mL of THF, then EtOH (149 mg, 3.235 mmol, 4 eq) is added at 0°C. After 1h30 stirring, 3 (400 mg, 0.809 mmol, 1 eq) is added at 0°C, and the reaction is stirred at RT 2 h. Then the solution is quenched with water

H. Nmr, 400 MHz, CD2Cl2, 293 K) ? 8,82-7.49 (m, 8H)

C. Nmr, 5 (s, CH),133.6 (s, Cq), 129.8 (s CH), 127.0 (s, Cq), MHz, CD2Cl2) ? 137.2 (s, Cq), 135.4 (s, CH), vol.134

2. , J. =-;-d, J. C. -p-=-9-;-d, and J. , (s, Me). 31 P NMR (162 MHz, CD2Cl2) ? +29.7.HRMS (ESI, CH3OH ) [M+Na] + (C29H23Br2NaO2P) (ESI, CH3OH / CH2Cl2: 90/10) m/z Calcd : 614,96946 m/z Found : 614.9691. 6. (general method B) 2 (200 mg, 0.372 mmol, 1 eq) and 2,2 bipyridine (116 mg, 0.746 mmol, 2 eq) are dissolved in 400 mL of dry THF and degassed for 20 mn, JC-P = 1.3 Hz, Cq), 133.6 (d, JC-P = 8,1 Hz, Cq), 133.4 (d, JC-P =142.6 Hz, Cq), 130.1 (d, JC-P = 3.4 Hz, Cq), 130.0 (s, CH), 129.1 (d, JC-P = 2.1 Hz, CH), vol.7

H. Nmr, 400 MHz, CD2Cl2) ? 8,77 (ddd, 2H, J = 14.4 Hz, J = 6.9 Hz, J = 1.4 Hz, H8), 8.15 (d, 2H, J = 8.1 Hz, H6), 7.95 (d, 2H, J = 7.7 Hz, H2 or 4), 7.75 (t, 2H, J = 7.4 Hz, H7), 7.55-7.49 (m, 4H, H3 and H2or 4), 7.15-7.11 (m, 1H, Hpara), 6.95-6.99 (m, 2H, Hmeta)

C. Hz, J. )-;-d, and J. Hz-;-d, 1 (s, CH), vol.137

C. Hz and J. )-;-d, 9 Hz, C6), 133.8 (d, JC-P = 10,1 Hz, C5), 132.1 (d, JC-P = 11,4 Hz, C10), 131.0 (d, JC-P = 2,3 Hz, Cpara), 130.1 (s, CH), 130.1 (d, JC-P = 10,4 Hz, Cortho), 128.5 (d, JC-P =, vol.133

, + (C26H18OP) m/z Calcd : 377.10898 m/z Found : 377.1088. Anal. Calcd for C26H17OP: C, 82.97

H. Nmr, 400 MHz, CD2Cl2) ? 8,58 (ddd, 2H, J = 14.9 Hz, J = 6.9 Hz, J = 1.5 Hz, H8), 8.15 (d, 2H, J = 8.1 Hz, H6), 7.97 (d, 2H, J = 7.7 Hz, H2 or 4)

C. Nmr, MHz, CD2Cl2) ?140.5 (d, JC-P = 1.9 Hz, Cq), 136.2 (s, C7),134.3 (d, JC-P = 3.0 Hz, C6), 134.1 (d, JC-P = 11.5 Hz, Cq), vol.134, p.2

D. and J. 129, Hz, C9), 126.8 (s, C3 or 7),125.1 (d, JC-P = 13.5 Hz, C3or7), 60.2 (s, CH2), 15.8 (d, JC-P = 1.6 Hz, CH3). 31 P NMR (162 MHz, CD2Cl2): ? +27.2.HRMS (ESI, CH3OH / CH2Cl2: 9/1) [M+Na] + (C22H17O2Na P) m/z Calcd : 367.0854, vol.127

, CD2Cl2) ? 8,58 (ddd, 2H, J = 15.3 Hz, J = 6.9 Hz, J = 1.5 Hz, H8), 8.19 (d, 2H, J = 8.2 Hz, H6), General Method B was used with 5 (65 mg, 0.109 mmol, 1 eq) to afford 8 as white powder (38 mg, 47 %). 1 H NMR (400 MHz

C. Hz, 134.5 (d, JC-P = 3.0 Hz, C6), 134.4 (d, JC-P = 11.6 Hz, Cq), 134.2 (d, JC-P = 2.1 Hz, Cq), 133.4 (d, JC-P = 6.2 Hz, C8), 132.3 (d, JC-P =11.7 Hz, Cq), vol.130

. Hz, 2 (s, Cq), 127.0 (s, C3 or 7), C2 or 4), 129.4 (d, JC-P = 2.0 Hz, C14), vol.128

, + ( C29H23O2NaP) m/z Calcd : 457.13279, pp.457-131

T. Baumgartner, R. Réau, ;. Hissler, P. W. Dyer, and R. Réau, Coord. Chem. Rev, vol.106, pp.1-44, 2003.

D. Joly, P. A. Bouit, M. Hissler, ;. Stolar, and T. Baumgartner, J. Mater. Chem. C, vol.4, pp.1212-1225, 2014.

J. I. Bates, J. Dugal-tessier, and D. P. Gates, Dalton Trans, vol.39, pp.3151-3159, 2010.

P. Bouit, A. Escande, R. Sz?cs, D. Szieberth, C. Lescop et al., J. Am. Chem. Soc, vol.134, pp.141124800-4805, 2012.

F. P. Mathey-;-m, W. Duffy, P. A. Delaunay, M. Bouit, T. Hissler-;-c)-y.-ren et al., Org. Biomol. Chem, vol.88, pp.1258-1271, 1988.

H. Chen, S. Pascal, Z. Wang, P. Bouit, Z. Wang et al., Chem. Eur. J, vol.20, pp.9784-9793, 2014.

C. Müller, L. E. Broeckx, I. De-krom, J. J. Weemers, ;. E. Regulska et al., Eur. J. Inorg. Chem, vol.47, pp.10344-10359, 2013.

X. He, J. Borau-garcia, A. Y. Woo, S. Trudel, T. Baumgartner-;-b)-y.-ren et al., Eur. J. Org. Chem, vol.135, pp.1405-2419, 1976.

V. Lyaskovskyy, R. J. Van-dijk-moes, S. Burck, W. I. Dzik, M. Lutz et al., Organometallics, vol.32, pp.802-806, 2013.

K. Schickedanz, J. Radtke, M. Bolte, H. Lerner, and M. Wagner, J. Am. Chem. Soc, vol.139, pp.2842-2851, 2017.

S. Zahn, R. Frank, E. Hey-hawkins, and B. Kirchner, Note that similar values have been reported for pnictogen interactions previously, Chem. Eur. J, vol.17, pp.6034-6038, 2011.

). J. Moilanen, C. Ganesamoorthy, M. S. Balakrishna, H. M. Tuononen, ;. Y. Hong et al., Pnictogen bonding similarly to other so-called ?-hole interactions (hydrogen bond, halogen bond, etc.) is chiefly electrostatic interaction with minor covalent character (charge transfer) arising between a pnictogen center and a Lewis base: (a) S. Scheiner, vol.46, pp.6547-6556, 2009.

C. Fave, T. Y. Cho, M. Hissler, C. W. Chen, T. Y. Luh et al.,

J. Réau, ). P. Am, J. Hindenberg, G. Zimmermann, C. Hernandez-sosa et al., Chem. Soc, vol.125, pp.7503-7508, 2003.

Z. Wang, B. S. Gelfand, and T. Baumgartner, Angew. Chem. Int. Ed, vol.55, pp.3481-3485, 2016.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

J. Iyengar, M. Tomasi, N. Cossi, J. M. Rega, M. Millam et al., , 2013.

, NBO Version

T. Lu and F. Chen, J. Comput. Chem, vol.33, pp.580-592, 2012.